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Based on the resonance integral (RI) tables produced by the NJOY program, the conven-

tional subgroup method usually ignores both the resonance elastic scattering and the

resonance interference effects. In this paper, on one hand, to correct the resonance elastic

scattering effect, RI tables are regenerated by using the Monte Carlo code, OpenMC, which

employs the Doppler broadening rejection correction method for the resonance elastic

scattering. On the other hand, a fast resonance interference factor method is proposed to

efficiently handle the resonance interference effect. Encouraging conclusions have been

indicated by the numerical results. (1) For a hot full power pressurized water reactor fuel

pin-cell, an error of about þ200 percent mille could be introduced by neglecting the reso-

nance elastic scattering effect. By contrast, the approach employed in this paper can

eliminate the error. (2) The fast resonance interference factor method possesses higher

precision and higher efficiency than the conventional Bondarenko iteration method.

Correspondingly, if the fast resonance interference factor method proposed in this paper is

employed, the kinf can be improved by ~100 percent mille with a speedup of about 4.56.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The subgroup method [1,2] is widely employed by nuclear

reactor neutronic codes such as DeCART [3,4] and MPACT [5]

for its geometrical flexibility and high accuracy compared to

the conventional equivalence theory. There are two main

steps in the subgroup method: (1) probability tables are ob-

tained from the resonance integral (RI) tables [6]; and (2)
n (Y. Li).

sevier Korea LLC on beha
mons.org/licenses/by-nc
subgroup fixed source problems are solved by using mature

multigroup transport solvers. The RI tables are typically ob-

tained by solving a series of slowing down problems over a

range of background cross sections using the hyperfine energy

group method or the Monte Carlo (MC) method. In fact, this

introduces two approximations by ignoring the resonance

elastic scattering and interference effects.
lf of Korean Nuclear Society. This is an open access article under
-nd/4.0/).
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Fig. 1 e Definition of subgroup according to magnitude of

total cross section.
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In the hyperfine energy group method, the asymptotic

scattering kernel is usually employed to obtain the scattering

source. The asymptotic scattering kernel ignores the up-

scattering of neutrons in the epithermal energy range [7].

In the MC method, the elastic scattering cross sections are

assumed to be constant at 0 K in the free gas model, which is

invalid for heavy nuclides with large resonance peaks [8]. As

a consequence, multiplication factors would be over-

estimated, which is the so-called resonance elastic scat-

tering [9e11] or neutron up-scattering effect [12e14]. In a

stochastic method, Rothenstein [15], Dagan [16], and Becker

et al. [17] used the S(a,b) table that stores cross sections for

different energies and scattering angles to take this effect

into account. However, the S(a,b) table can only be prepared

at several temperatures and may introduce many errors in

performing temperature interpolation. Therefore, a sto-

chastic method named the Doppler broadening rejection

correction (DBRC) method was proposed [11,17]. It samples

the target velocity on-the-fly to instead of preparing S(a,b)

table for specified temperatures. It is more accurate and

stable but consumes more computing time than the S(a,b)

method. Lee et al. [9] and Mori and Nagoya [18] developed the

weight correction method (WCM) to save computation time.

Unfortunately, its disadvantage is the increase of variance

due to the fact that the weight correction factor may deviate

significantly from unity [18]. By contrast, to consider this

effect in deterministic codes, Lee et al. [9] solved the neutron

slowing down problems to generate the RI tables by devel-

oping an MC code with an exact scattering kernel, while Lim

et al. [12] implemented the Doppler broadening rejection

correction (DBRC) into the McCARD code [19] to generate

cross sections for the nTRACER [4] code. In this paper, to

introduce the Doppler broadened scattering kernel into the

multigroup deterministic method, the MC code OpenMC [20]

is modified via DBRC and used to generate resonance elastic

correction factor tables.

Only one resonant nuclide and one nonresonant are con-

tained in the infinite homogeneous problems for which the

neutron slowing down equation is solved to produce the RI

tables. In this case, the interference between the resonance

peaks of different nuclides cannot be taken into account. It

leads to the so-called resonance interference effect. The

Bondarenko iteration method [21] was conventionally

employed to correct this effect. In this method, when per-

forming resonance calculations of one resonant nuclide, all

other resonant nuclides are considered to be background

nuclides with constant cross sections. An iteration between

different resonant nuclides was carried out to converge the

background and self-shielded cross sections. However, it

usually consumes too much computing time. Consequently,

there are two classes of method developed to improve the

resonance interference treatment.

The first class treated the overlapped energy ranges of

different subgroups of different resonant nuclides as new

subgroups. In order to determine the overlap energy range,

Takeda and Kaneyama [22] suggested figuring out the detailed

subgroup energy domain from the continuous total cross

section function in terms of energy. A parameter was intro-

duced to define a new subgroup where one nuclide takes a

certain subgroup under a given condition while the others
take another subgroup. In this new subgroup, themacroscopic

subgroup cross sections can be calculated from the subgroup

cross sections of the resonant nuclides in their particular

subgroups. Therefore the resonance interference effect can be

taken into account by solving the subgroup fixed source

problem defined in the new subgroups. By contrast, Huang

et al. [23] simplified the procedure by assuming that the

overlap energy range of different nuclides is stochastic. The

parameter is calculated by multiplying the subgroup proba-

bility of the corresponding subgroups of different nuclides.

H�ebert [24] used a two-nuclide correlated matrix to present

the overlap energy ranges. These methods show higher pre-

cision than the Bondarenko iteration, but, due to their time

consumption, are still not applicable to cases with more than

two resonant nuclides.

The other class is the resonance interference factor (RIF)

method proposed by Williams [25]. The RIF is the quotient of

self-shielded cross sections. The numerator is calculated by

considering the entire mixture of all the resonant nuclides,

while the denominator is calculated with only one resonant

nuclide. These self-shielded cross sections are computed by

the hyperfine energy groupmethod or theMCmethod. The RIF

is applied to a self-shielded cross section, calculated by

methods such as the subgroupmethod or equivalence theory,

with the assumption that there is only one resonant nuclide in

themedium. The RIF can be calculated in either homogeneous

or heterogeneous system sinc. Chiba [26] and Kim [27] proved

the consistency of these methods. The homogeneous RIF

method saves a lot of time compared with the heterogeneous

method. If the RIF is calculated on-the-fly, it still consumes too

much time. Kim and Hong [28] and Peng et al. [29] tried to

prepare the RIF in-priori as a function of temperature, dilution

cross section, and the ratio of number density. To reduce the

storage of the RIF table, the resonance interference effect is

assumed to be introduced by the resonant nuclides one after

another, rather than simultaneously. The tabulation approach

is cheap in computational time but unfortunately may intro-

duce a lot of error for cases with more than two resonant

nuclides, such asmixed oxide (MOX) fuel problems. Despite its

drawbacks, the RIFmethod has achievedwide application due

to its simplicity. The RIF method and its variants has been

http://dx.doi.org/10.1016/j.net.2015.12.015
http://dx.doi.org/10.1016/j.net.2015.12.015
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applied to codes such as WIMS [30], LANCER02 [31], MPACT

[32], DeCART [33], SCALE [27], STREAM [34], and APOLLO3 [35].

To overcome the drawbacks of the conventional RIF

methods, this paper proposes a newmethod named fast RIF to

treat the resonance interference effect.

The rest of this paper is organized as follows. Section 2

briefly introduces the theory of the subgroup method and ex-

plains how the resonance elastic scattering and interference

effects are corrected to improve the subgroup method. Nu-

merical results in Section 3 demonstrate the improvements.

Finally, conclusions and discussions are given in Section 4.
2. Theory

2.1. Subgroup method

Subgroups are defined according to the magnitude of the total

cross sections, as shown in Fig. 1. Taking the third subgroup in

group g as an example, the energy domain is:

DEg;32fEjs3 < sðEÞ � s4g (1)

The neutron slowing down equation in a heterogeneous

system is:
F
�
st;k;g;1;/;st;k;g;I;pk;g;1;/; pk;g;I

�
¼

XJ

j¼1

"
Rt;k;g;j �

XI

i¼1

st;k;g;ipk;g;i

�
sp;k þ s0;j

�
st;k;g;i þ s0;j

#2

(7)
UVfðr;u;UÞ þ
X
t

ðr;uÞfðr;u;UÞ ¼ 1
4p

Z
du0 X

s0

ðr;u0/uÞfðr;u0Þ

(2)

where u is the lethargy,
P
t
ðr;uÞ is the total cross section, andP

s0
ðr;u0/uÞ is the 0th Legendre moment of the scattering cross

section [36]. In Eq. (2), the fission source has been ignored

considering the fact that almost all fission neutrons are fast

ones. By assuming that the scattering is elastic and isotropic

in a center-of-mass system and applying narrow resonance

approximation, the scattering source can be simplified into:

1
4p

Z
dm0 X

s0

ðr;u0/uÞfðr;u0Þ ¼ 1
4p

X
p

ðrÞ (3)

where
P
p
ðrÞ is the macroscopic potential scattering cross

section.

Integrating the neutron slowing down equation over a

subgroup yields the subgroup fixed source problem:

UVfg;iðr;UÞ þ
X
t;g;i

ðrÞfg;iðr;UÞ ¼ Dug;i
1
4p

X
p

ðrÞ (4)

where
P
t;g;i

ðrÞ is the macroscopic subgroup total cross section,

fg,i(r,U) is the subgroup flux, Dug,i ¼ pg,iDug is lethargy width of

subgroup i, pg,i is the subgroup probability, and Dug is the
lethargy width of energy group g. The subgroup total cross

section is defined by:

X
t;g;i

ðrÞ ¼
X
k

NkðrÞst;k;g;i ¼
X
k

NkðrÞ

Z
Dug;i

st;kðuÞfðuÞdu
Z

Dug;i

fðuÞdu
(5)

where k is the nuclide index, Nk(r) is the atom density, st,k,g,i is

the microscopic subgroup total cross section, st,k(u) is the

continuous energy total cross section of nuclide k, and f(u) is

the flux spectrum.

The combination of subgroup cross section and subgroup

probability constitutes the subgroup probability table. To

obtain this table, an RI table needs to be constructed by using

the self-shielded cross section:

Rx;k;g;j ¼ sx;k;g;j
sp;k þ s0;j

st;k;g;j þ s0;j
(6)

where sp,k stands for themicroscopic potential scattering cross

sectionofnuclidek, and s0,j is j
th dilutioncross section.The self-

shielded cross sections are obtained by solving the neutron

slowing down equations over a range of background cross sec-

tions. Then a fitting between the resonance integral Rt,k,g,j and

the dilution cross section s0,j is implemented byminimizing:
where the subgroup total cross section and subgroup probabil-

ity are the corresponding fitting coefficients, I is the number of

subgroups in Group g, and J is the number of dilution cross

sections. Other subgroup cross sections can be obtained by

minimizing:

F
�
sx;k;g;1;/;sx;k;g;I

� ¼ XJ

j¼1

"
Rx;k;g;j �

XI

i¼1

sx;k;g;ipk;g;i

�
sp;k þ s0;j

�
st;k;g;i þ s0;j

#2

(8)

After obtaining the probability table, Eq. (4) can be solved

by using a multigroup transport solver. In this paper, a

multigroup transport solver MMOC [37] was employed. After

obtaining the subgroup flux, the effective self-shielding cross

sections of nuclide k can be obtained:

seff
x;k;gðrÞ ¼

Z
4p

X
i

sx;k;g;iðrÞfg;iðr;UÞdU
Z
4p

X
i

fg;iðr;UÞdU
(9)

2.2. The resonance elastic scattering effect correction

2.2.1. The asymptotic scattering kernel
The neutron slowing down equation of a homogeneous sys-

tem can be written as:

http://dx.doi.org/10.1016/j.net.2015.12.015
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Fig. 2 e Impact of resonance elastic scattering on k∞ for UO2 pin cell problems at hot zero power of Mosteller benchmark.

PCM, percent mille.
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X
k

X
t;k

ðEÞfðEÞ ¼
X
k

Z∞
0

X
s;k

ðEÞfkðE0/EÞfðE0ÞdE0 (10)

where k is nuclide index and fk is the elastic scattering kernel.

In cross section generation code NJOY [7], or other codes

based on the hyperfine energy group method [38e40], the

target nuclide is assumed to be at rest. The elastic scattering

kernel can then be written as:

fkðE0/EÞ ¼ 1
ð1� aKÞE0 (11)

where ak ¼ (Ak � 1)2/(Ak þ 1)2 and Ak is the mass ratio of the

target nuclide to the neutron.
Fig. 3 e Impact of resonance elastic scattering on k∞ for UO2 pi

PCM, percent mille.
Eq. (11) is the asymptotic scattering kernel, which ignores

neutron up-scattering.

2.2.2. The conventional free gas model
The MC method usually employs the free gas model to

consider the thermal agitation of the target at elastic collision

[8]. Once the velocity of the target is sampled, the velocity of

the out-coming neutron can be determined. The probability

density function of the target velocity is:

PðV;mjvnÞ ¼ ssðvr;0ÞvrPðVÞ
2seff

s ðvn;TÞvn

(12)

where V is the speed of the target, m is the cosine of the azi-

muth angle, vn is the speed of the neutron, vr is the relative

speed, T is temperature, P(V) is the MaxwelleBoltzmann
n cell problems at hot full power of Mosteller benchmark.

http://dx.doi.org/10.1016/j.net.2015.12.015
http://dx.doi.org/10.1016/j.net.2015.12.015


Table 1 e The resonance severity (RS) of different
resonant nuclides for the 80th energy group.

Nuclide Density (atom/b-cm) RS

238U 2.1061e-2 3.9747e-1
239Pu 8.2425e-4 2.1075e-3
240Pu 5.4950e-4 1.3404e-3
241Pu 2.7475e-4 2.8449e-4
235U 1.5275e-4 2.7327e-4
242Pu 1.8317e-4 2.0350e-4
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distribution, ss(vr,0) is the elastic scattering cross section at

relative speed at zero temperature, and seff
s ðvn;TÞ is the

effective elastic scattering cross section.

Assuming that ss(vr,0) does not fluctuate with energy, Eq.

(12) can be written as:

PðV;mjvnÞ ¼ C

�
vr

vn þ V

��
P1f1ðVÞ þ P2f2ðVÞ

	
(13)

where:

C ¼ ð2þ ffiffiffi
p

p
bvnÞssðvr;0Þ

2seff
s ðvn;TÞ

ffiffiffi
p

p
bvn

(14)

P1 ¼ 1

1þ
ffiffi
p

p
bvn
2

(15)

P2 ¼ 1� P1 (16)

f1ðVÞ ¼ 2b4V3e�b2V2
(17)
Fig. 4 e Errors of effective absorption self-shielded cross section

nuclide grouping.
f2ðVÞ ¼ 4b3ffiffiffi
p

p V2e�b2V2
(18)

b ¼
ffiffiffiffiffiffiffiffiffi
AM
2kT

r
(19)

Mn is the mass of a neutron and k is the Boltzmann constant.

To determine the velocity of the target, V needs to be

sampled from f1(V) with a probability of P1, or from f2(V) with a

probability of P2. Secondly, the cosine of the angle between the

neutron velocity and the target velocity is sampled uniformly

on[�1,1]. Thirdly, this sampling is accepted with a probability

of vr
vnþV.

2.2.3. DBRC
The DBRC method was designed to consider the thermal

agitation and resonance of elastic scattering at the same time.

The modified probability density function can be written as:

PðV;mjvnÞ ¼ C0
�

ssðvr; 0Þ
smax
s ðvx;0Þ

��
vr

vn þ V

��
P1f1ðVÞ þ P2f2ðVÞ

	
(20)

where

C0 ¼ ð2þ ffiffiffi
p

p
bvnÞsmax

s ðvx;0Þ
2seff

s ðvn;TÞ
ffiffiffi
p

p
bvn

(21)

vx2

�
vn � 4ffiffiffi

a
p ;vn þ 4ffiffiffi

a
p

�
(22)

a ¼ Mt

2kT
(23)

smax
s ðvx; 0Þ is themaximum value of the elastic scattering cross

sections within a range of the dimensionless speed of vx.
for 240Pu. RIF, resonance interference factor; RNG, resonant

http://dx.doi.org/10.1016/j.net.2015.12.015
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Fig. 5 e Errors of effective absorption self-shielded cross section for 235U. RIF, resonance interference factor; RNG, resonant

nuclide grouping.
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The difference between Eq. (20) and Eq. (13) is the addi-

tional rejection term in Eq. (20). During the sampling of the

target velocity from Eq. (20), the accepting probability in the

additional fourth step becomes ssðvr;0Þ=smax
s ðvx;0Þ.

2.2.4. Resonance elastic scattering correction in subgroup
method
To consider the resonance elastic scattering effect in the

subgroup method, self-shielded cross sections with and
Fig. 6 e Errors of effective absorption self-shielded cross section

nuclide grouping.
without the resonance elastic scattering effect, are calculated

by OpenMC [20]. The resonance elastic scattering correction

factor can be obtained by:

fg;kðsb;TÞ ¼
sDBRC
g;k ðsB;TÞ
sfree
g;k ðsB;TÞ

(24)

These factors are prepared as a function of the background

cross section and temperature in the multigroup library. An
for 238U. RIF, resonance interference factor; RNG, resonant

http://dx.doi.org/10.1016/j.net.2015.12.015
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Table 2 e Comparison of time for resonance calculation.

Method SFSP
(n)

SDP
(n)

Time for resonance calculation
(sec)

Iteration 564 0 108.03

RNG 282 0 55.26

RIF 282 18 106.72

Fast RIF 47 3 23.69

RIF, resonance interference factor; RNG, resonant nuclide grouping;

SDP, slowing down problem; sec, second; SFSP, subgroup fixed

source problem.
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interpolation can be done once the background cross section

and temperature is ready. The factor can then be applied to

correct the self-shielded cross sections.
2.3. The resonance interference effect correction

2.3.1. The Bondarenko iteration method
Both the RI tables and the probability tables are obtained

without considering the resonance interference effect. Prac-

tically, however, there are multiple resonant nuclides mixed

together. The flux spectra interfere with each other, so that

the self-shielded cross sections are different from thosewhere

only one resonant nuclide is considered as resonant. Corre-

spondingly, most lattice codes adopt the Bondarenko iteration

method [21].

The computation flow of the Bondarenko iteration method

is as follows. Firstly, taking resonant nuclide k as the only

resonant nuclide, with all of the others as nonresonant nu-

clides. The macroscopic subgroup cross sections of the reso-

nant region m can be obtained by:

X
x;m;g;i

¼ Nk;msx;k;g;i þ
X
k0sk

Nk0 ;msx;k0 ;g (25)

For nuclides without significant resonance, their micro-

scopic cross sections, sx;k0 ;g can be directly read from the

multigroup nuclear data library. For resonant nuclides

assumed to be nonresonant, their microscopic cross sections

can be updated iteratively by starting from a guess at the

beginning. After the subgroup resonance calculation, the self-

shielded cross section of nuclide k can be obtained by Eq. (9).
Table 3 e Comparison of the k∞ for mixed oxide pin cell proble

Condition PuO2 content (wt.%) Reference

HFP 1.0 0.93873

2.0 1.01406

4.0 1.06983

6.0 1.09933

8.0 1.12331

HZP 1.0 0.94671

2.0 1.02307

4.0 1.07949

6.0 1.1089

8.0 1.13299

HFP, hot full power; HZP, hot zero power; RIF, resonance interference fac
This process can then be repeated by setting another resonant

nuclide as the only nuclide until all of the self-shielding cross

sections are converged.

As the number of resonant nuclides may be large due to

depletion, a resonant nuclide grouping (RNG) technique can be

applied to reduce the computation time. Resonant nuclides

are divided into categories according to their resonance fea-

tures. In each resonance category, one representative nuclide

is selected. During the Bondarenko iteration, one resonance

category is treated as one resonant nuclide. The subgroup

probabilities of one resonance category are assumed to be the

same. Then the subgroup cross section can be calculated by:

sc;m;x;g;i ¼

P
k2Cc

Nk;msx;k;g;iP
k2Cc

Nk;m
z

P
k2Cc

Nk;m
Rk;g;∞
Rr;g;∞

sx;r;g;iP
k2Cc

Nk;m
(26)

where c is the category index, Cc is the nuclide indexes of

category c, r is the index of the representative nuclide, and

Rk,g,∞ is the resonance integral at infinite dilution cross sec-

tion. The self-shielded cross sections of the representative

nuclide are updated by the subgroup flux according to Eq. (9)

and those of the nonrepresentative nuclides are updated by:

sx;k;g ¼ Rk;g;∞

Rr;g;∞
sx;r;g (27)

In the lattice codeHELIOS [41], the resonance categories are

the same for different resonance energy groups. The codemay

not introduce much error when the number of energy groups

is < 100, but when a finer energy group structure such as 172-

group XMAS mesh is used, it is possible that in one energy

group there is no resonance peak for the representative

nuclide, but strong resonance peaks for the others. In this

case, the errors of the self-shielded cross sections of the

nonrepresentative nuclides may become very large. To over-

come this defect, the resonance categories are determined to

be different for different energy groups. A variable named

resonance severity (RS) can be defined to characterize the in-

tensity of the resonance.

RSk;m;g ¼ Nk;mR
max
t;k;g

.
Rmin
t;k;g (28)

where Rmax
t;k;g and Rmin

t;k;g are themaximum andminimumRI in the

RI table, the quotient of which means the resonance intensity
ms.

Error (percent mille)

Iteration RNG RIF Fast RIF

�135 �115 �159 �120

�170 �148 �154 �131

�207 �150 �157 �125

�243 �152 �164 �138

�272 �155 �158 �148

�140 �130 �131 �102

�159 �142 �113 �93

�196 �132 �128 �107

�213 �114 �123 �106

�249 �123 �130 �128

tor; RNG, resonant nuclide grouping.

http://dx.doi.org/10.1016/j.net.2015.12.015
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Table 4 e Comparison of the k∞ for UO2 pin cell problems.

Condition Enrichment (%) Reference Error (percent mille)

Iteration RNG RIF Fast RIF

HFP 0.711 0.66435 �110 �110 �138 �103

1.6 0.95649 �133 �133 �152 �143

2.4 1.09335 �137 �137 �140 �113

3.1 1.17098 �158 �158 �152 �126

3.9 1.2334 �171 �171 �150 �127

4.5 1.26872 �176 �176 �144 �123

5.0 1.29312 �188 �188 �148 �127

HZP 0.711 0.66902 �118 �118 �110 �86

1.6 0.96307 �137 �137 �119 �122

2.4 1.10091 �151 �151 �119 �99

3.1 1.1788 �161 �161 �118 �100

3.9 1.24161 �184 �184 �128 �111

4.5 1.27701 �185 �185 �114 �103

5.0 1.30144 �193 �194 �114 �103

HFP, hot full power; HZP, hot zero power; RIF, resonance interference factor; RNG, resonant nuclide grouping.

Table 5 e Composition of the fuel of the depletion case.

Nuclide Density

16O 4.6019200E-02
99Tc 7.7111100E-05
235U 1.5673502E-04
238U 2.0719173E-02
237Np 2.6500062E-05
238Pu 1.6212906E-05
239Pu 1.6925900E-04
240Pu 7.8198341E-05
241Pu 5.1843213E-05
242Pu 2.4885304E-05
241Am 2.1594599E-06
243Am 8.8360858E-06
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in the microscopic scale, and RSk,m,g means the resonance

intensity in the macroscopic scale. All of the resonant nu-

clides are sorted by resonance intensity in a decreasing order.

For example, if C categories are desired, the first Ce 1 resonant

nuclides make the C e 1 categories, while all of the remaining

resonant nuclides make the last category, within which the

resonant nuclide with the maximum resonance intensity is

selected as the representative.

2.3.2. Fast RIF method
The calculation flow of the fast RIF method is as follows. (1)

Select the dominant resonant nuclide of group g according to

the magnitude of RSk,g defined by Eq. (28). (2) Perform the

resonance calculation for the dominant resonant nuclide in

Group g, with all other resonant nuclides considered as back-

ground nuclides whose absorption cross section is zero and

scattering cross section is equal to the potential scattering

cross section. The self-shielded cross section of the dominant

resonant nuclide is obtained by Eq. (9). (3) Convert the hetero-

geneous system to an equivalent homogeneous system for

each resonant region m by preserving the self-shielding cross

section of the dominant resonant nuclide. The homogeneous

system consists of all the resonant nuclides in resonant region

m and a pseudo nuclide whose atomic weight ratio is identical

to thatof 1H.Theabsorptioncrosssectionof thepseudonuclide

is zeroand themacroscopic scatteringcross section is givenby:

X
s;m;g;pseudo

¼ s0;dom;m;gNdom;m �
X

k'sdom

sp;k0Nk0 ;m (29)

where s0,dom,m,g is the equivalent microscopic dilution cross

section in resonant region m, which is obtained by interpola-

tion in the RI table of the dominant nuclide with the self-

shielded cross section calculated in the second step. Ndom,m

is the number density of the dominant nuclide in resonant

regionm. The subscript dom stands for the dominant resonant

nuclide.
P

k0sdom

sp;k0Nk0 ;m is the macroscopic potential scattering

cross section of the resonant nuclides other than the domi-

nant resonant nuclide. (4) The above three steps are carried

out for each resonance energy group. Therefore, for each
resonant region, an equivalent homogeneous system can be

found. The homogeneous system consists of a mixture of

resonant nuclides and a pseudo nuclide, whose macroscopic

scattering cross sections vary with the energy group. The

number density of the pseudo nuclide is set to be Nm,pseudo and

the microscopic scattering cross section of each energy group

is obtained by:

ss;m;g;pseudo ¼ Ss;m;g;pseudo

Nm;pseudo
(30)

The slowing down problem of the constructed homoge-

neous system is solved with the hyperfine energy group

method. The obtained self-shielding cross sections of the

resonant nuclides in the mixture are the effective self-

shielded cross sections considering the resonance interfer-

ence effect.

To compare the precision and efficiency between the

conventional and the fast RIF methods, a kind of conventional

RIF method is also implemented in this paper. The conven-

tional RIF method carries out the above steps, from Step 2 to

Step 4, for each resonant nuclide. When one resonant nuclide

is under consideration, it is treated as the dominant nuclide.

In Step 4, only the self-shielded cross sections of the resonant

nuclide under consideration are updated.

http://dx.doi.org/10.1016/j.net.2015.12.015
http://dx.doi.org/10.1016/j.net.2015.12.015


Fig. 7 e Errors of effective absorption self-shielded cross section for 243Am in the depletion case. RIF, resonance interference

factor; RNG, resonant nuclide grouping.
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3. Numerical results

Based on the DBRC method, the OpenMC code has been

modified. The new sampling scheme is applied to cases where

Ak is > 50 and neutron energy locates in the range of

0.4e210 eV. The RI tables and the resonance elastic scattering

correction factor tables of 235U, 238U, 239Pu, 240Pu, 241Pu, and
Fig. 8 e Errors of effective absorption self-shielded cross section

factor; RNG, resonant nuclide grouping.
242Pu are prepared by OpenMC. The RI tables of other resonant

nuclides are prepared by RMET21 [38] to save computational

time. The probability tables are prepared based on the RI ta-

bles without consideration of the resonance elastic scattering

effect. The other part of the multigroup library is generated by

NJOY. The library is based on ENDF/B-VII.0. The multigroup

library is generated based on the 172-group XMAS mesh [42],
for 237Np in the depletion case. RIF, resonance interference

http://dx.doi.org/10.1016/j.net.2015.12.015
http://dx.doi.org/10.1016/j.net.2015.12.015


Fig. 9 e Errors of effective absorption self-shielded cross section for 99Tc in the depletion case. RIF, resonance interference

factor; RNG, resonant nuclide grouping.

Table 6 e Comparison of k∞ for mixed oxide pin cell
problems at hot zero power.

PuO2

content (%)
Reference Error (percent mille)

Scheme 1 Scheme 2 Scheme 3

1.0 0.94640 �79 �172 �150

2.0 1.02211 �107 �198 �161

4.0 1.07766 �148 �234 �179

6.0 1.10599 �181 �262 �189

8.0 1.12951 �200 �276 �189
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and the self-shielding is treated in the energy range of

4.0e9,119 eV fromGroup 46 to Group 92. The resonance elastic

scattering correction method, Bondarenko iteration method,

conventional RIF method and fast RIF method are imple-

mented into a subgroup method code: SUGAR [43,44].

3.1. The resonance elastic scattering effect correction

The Mosteller Doppler defect benchmark [45] is analyzed by

using both SUGAR and the modified OpenMC. The difference

of eigenvalues for the UO2 pin cell problems at hot zero power

(HZP) and hot full power (HFP) between the conventional

scattering kernel and the Doppler broadened scattering kernel

are given in Figs. 2 and 3. For comparison, references are

provided including MVP-WCM (MVP [18] with WCM and the

Doppler broadened scattering kernel), MCNP6-DBRC (MCNP6

[46] with DBRC), TRIPOLI-DBRC and TRIPOLI-WCM (TRIPOLI

[10] with DBRC and WCM respectively). It can be found that

SUGAR provides consistent results with the others. For the

UO2 pin cell, the asymptotic scattering kernel overestimates

the eigenvalues by 30e140 percent mille (pcm) at HZP and

80e230 pcm at HFP.

3.2. The resonance interference effect correction

The resonance severity (RS) of different nuclides are given in

Table 1 for the Mosteller benchmark MOX pin cell problem at

HZP with 8% PuO2. As the values of RS vary with each energy

group, only RS for the 80th energy group are given. For this

group, 238U is selected as the dominant resonant nuclide in the

fast RIF method. In the RNG method, if the number of cate-

gories is three, 238U and 239Pu make the first two categories

while 240Pu, 241Pu, 235U, and 242Pu make the third group with
240Pu being the typical nuclide.
The Mosteller benchmark problems are analyzed by using

different resonance interference methods without resonance

elastic scattering correction. The reference self-shielded cross

sections are estimated by OpenMC with the conventional free

gas model. To get rid of the data library or data processing

errors, the reference k∞ is calculated using the reference self-

shielded cross sections and other cross sections read from the

multigroup nuclear library by using the transport solver of

SUGAR.

The errors of the effective absorption cross sections for the

MOX pin cell problem at HZP are provided in Figs. 4e6. The

PuO2 content in the fuel is 8%. It is shown that the errors of the

Bondarenko iteration method and the RNG method are larger

than those of the RIF method and the fast RIF method, espe-

cially for 240Pu (as in Fig. 4) and 235U (as in Fig. 5). The reso-

nance of those two nuclides is weak, but they are fiercely

interfered with by the dominant resonant nuclide 238U (as in

Fig. 6). The error of the iteration method and the RNG method

belongs to the same level for the representative resonant

nuclides 235U (as in Fig. 5) and 238U (as in Fig. 6). For the

nonrepresentative 240Pu (as in Fig. 4), the errors of these two

methods differentiate from each other significantly. By

http://dx.doi.org/10.1016/j.net.2015.12.015
http://dx.doi.org/10.1016/j.net.2015.12.015
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contrast, both the fast and the conventional RIF methods are

in good agreement with the reference.

The times taken for the resonance calculation, including

the time for the subgroup fixed source calculation and the

slowing down calculation, is compared in Table 2. Compared

with the Bondarenko iteration method, the RNG method

groups the six resonant nuclides into three categories and

saves half of the time. Compared with the conventional RIF

method, only one resonant nuclide is chosen to perform a

subgroup fixed source calculation in the fast RIF method, and

the slowing down calculations are carried out once for all the

nuclides rather than for each nuclide. The speedup of the fast

RIF method is ~4.56. In general, the Bondarenko iteration

method and the conventional RIF method consume the

longest times, and the fast RIF method consumes the least.

The errors of k∞ for the MOX and UO2 pin cell problems are

compared in Tables 3 and 4 respectively. For most cases, the

RIF and the fast RIF method gain higher precision than the

Bondarenko iteration method. The precisions of the RIF and

the fast RIF methods are at the same level. For the UO2 pin cell

problems, there are only two resonant nuclides so that there is

no typical resonant nuclide in the RNGmethod. Therefore, the

RNG method and the Bondarenko iteration method are of no

difference. For the MOX pin cell problems, the errors of the

RNG method tend to be cancelled out due to the over-

estimation of 238U absorption and the underestimation of the

absorption of plutonium nuclides.

The geometry of the depletion case is the same as that of

the Mosteller benchmark UO2 problem at HFP condition. The

nuclide densities in the fuel region are given in Table 5. The

self-shielded cross sections of 243Am, 237Np and 99Tc, calcu-

lated by different resonance interference correction methods,

are compared in Figs. 7e9. The conventional RIF method and

the fast RIF method shows advantages over the Bondarenko

iteration method and the RNG method.
3.3. The combined resonance elastic scattering and
interference effects corrections

Table 6 compares the k∞ for the MOX pin cell problems at HZP

with different correction schemes. The references are calcu-

lated by OpenMCwith theDBRCmethod. Scheme 1 applies the

Bondarenko iteration without resonance elastic scattering

correction. Scheme 2 applies the Bondarenko iteration and

resonance elastic scattering correction. Scheme 3 applies fast

RIF and resonance elastic scattering correction. The reso-

nance elastic scattering correction makes a negative contri-

bution to the k∞ since more neutrons are absorbed due to up-

scattering. On the contrary, the fast RIF resonance interfer-

ence correction makes a positive contribution. Therefore the

errors may be cancelled out when neither of these two effects

is considered. When the PuO2 content is low, the resonance

interference is not that fierce and the advantage of fast RIF

over the Bondarenko iteration is not obvious. Therefore the

results of Scheme 1 are better than those of Scheme 3 in terms

of k∞. When the PuO2 content is high, the advantage of fast RIF

is obvious, so that the correction of resonance interference

overwhelms the correction of resonance elastic scattering.
4. Conclusions

Two aspects of the legacy subgroup method were improved

upon. Firstly, the resonance elastic scattering effect is consid-

ered. The Mosteller benchmark problems were analyzed. The

numerical results show that the Doppler broadened scattering

kernel decreases k∞ 30e140 pcmatHZP and 80e230 pcm inHFP

for light-water reactor UO2 pin cell problems.

Secondly, the fast RIF method is proposed to improve the

computational efficiency of the resonance interference effect

treatment. Four methods are compared and analyzed,

including the conventional Bondarenko iteration method, the

RIF method, and the new fast RIF method. The numerical re-

sults lead to encouraging conclusions. Compared with the RIF

method, the fast RIF method provides effective self-shielded

cross sections with equivalent accuracy which is an

improvement on the Bondarenko iteration method. For

computing efficiency, compared to the iteration method, the

RNG method saves half of the computation time for the MOX

pin cell problems, while the fast RIF method consumes much

less computational resources. The speedup of the fast RIF

method is ~4.56 for MOX pin cell problems compared the

conventional RIF method.
Conflicts of interest

All authors have no conflicts of interest to declare.

Acknowledgments

This work was financially supported by the National Natural

Science Foundation of China (No. 11305123) and Science and

Technology on Reactor SystemDesign Technology Laboratory.
r e f e r e n c e s

[1] A. H�ebert, The Ribon extended self-shielding model, Nucl.
Sci. Eng. 151 (2005) 1e24.

[2] T. Takeda, H. Fujimoto, K. Sengoku, Application of multiband
method to KUCA tight-pitch lattice analysis, J. Nucl. Sci.
Technol. 28 (1991) 863e869.

[3] H.G. Joo, J.Y. Cho, K.S. Kim, C.C. Lee, S.Q. Zee, Methods and
performance of a three-dimensional whole-core transport
code DeCART, in: Proceedings of the Physics of Fuel Cycles
and Advanced Nuclear Systems: Global Developments
(PHYSOR) 2004, Chicago (IL), April 25e29, 2004.

[4] Y.S. Jung, C.B. Shim, C.H. Lim, H.G. Joo, Practical numerical
reactor employing direct whole core neutron transport and
subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62
(2013) 357e374.

[5] Y. Liu, B. Collins, B. Kochunas, W. Martin, K. Kim,
M. Williams, Resonance self-shielding methodology in
mpact, in: Proceedings of Mathematics and Computational
Methods Applied to Nuclear Science & Engineering (M&C)
2013, Sun Valley (ID), May 5e9, 2013.

[6] H.G. Joo, G.Y. Kim, L. Pogosbekyan, Subgroup weight
generation based on shielded pin-cell cross section
conservation, Ann. Nucl. Energy 36 (2009) 859e868.

[7] R.E. MacFarlane, NJOY99.0: a Code System for Producing
Pointwise and Multigroup Neutron and Photon Cross

http://refhub.elsevier.com/S1738-5733(16)00068-1/sref1
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref1
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref1
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref1
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref2
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref2
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref2
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref2
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref3
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref3
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref3
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref3
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref3
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref3
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref4
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref4
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref4
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref4
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref4
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref5
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref5
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref5
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref5
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref5
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref5
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref5
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref5
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref6
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref6
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref6
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref6
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref7
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref7
http://dx.doi.org/10.1016/j.net.2015.12.015
http://dx.doi.org/10.1016/j.net.2015.12.015


Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 ( 2 0 1 6 ) 3 3 9e3 5 0350
Sections from ENDF/B Evaluated Nuclear Data, 2000. Los
Alamos (NM).

[8] X-5 Monte Carlo Team, MCNPda General Monte Carlo n-
particle Transport Code, Version 5, 2003. Los Alamos, New
Mexico.

[9] D. Lee, K. Smith, J. Rhodes, The impact of 238U resonance
elastic scattering approximations on thermal reactor
Doppler reactivity, in: Proceedings of International
Conference on the Physics of Reactors (PHYSOR) 2008,
Interlaken (Switzerland), September 14e19, 2008.

[10] A. Zoia, E. Brun, C. Jouanne, F. Malvagi, Doppler broadening
of neutron elastic scattering kernel in Tripoli-4, Ann. Nucl.
Energy 54 (2013) 218e226.

[11] B. Becker, On the Influence of the Resonance Scattering
Treatment in Monte Carlo Codes on High Temperature
Reactor Characteristics, University of Stuttgart, Stuttgart
(Germany), 2010.

[12] C.H. Lim, Y.S. Jung, H.G. Joo, Incorporation of resonance
upscattering and intra-pellet power profile in direct whole
core calculation, in: Conf. Korean Nucl. Soc, 2012.

[13] L. Mao, I. Zmijarevic, The Up-scattering Treatment in the
Fine-structure Self-shielding Method in APOLLO3, in:
Proceedings of International Conference on the Physics of
Reactors (PHYSOR) 2014, The Westin Miyako, Kyoto, Japan,
September 28 e October 3, 2014.

[14] M. Ouisloumen, R. Sanchez, A model for neutron scattering
off heavy isotopes that accounts for thermal agitation
effects, Nucl. Sci. Eng. 107 (1991) 189e200.

[15] W. Rothenstein, Proof of the formula for the ideal gas
scattering kernel for nuclides with strongly energy
dependent scattering cross sections, Ann. Nucl. Energy 31
(2004) 9e23.

[16] R. Dagan, On the use of S(a,b) tables for nuclides with well
pronounced resonances, Ann. Nucl. Energy 32 (2005) 367e377.

[17] B. Becker, R. Dagan, G. Lohnert, Proof and implementation of
the stochastic formula for ideal gas, energy dependent
scattering kernel, Ann. Nucl. Energy 36 (2009) 470e474.

[18] T.Mori, Y. Nagaya, Comparison of resonance elastic scattering
models newly implemented inMVP continuous-energyMonte
Carlo code, J. Nucl. Sci. Technol. 46 (2009) 793e798.

[19] H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, Mccard:
Monte Carlo code for advanced reactor design and analysis,
Nucl. Eng. Technol. 44 (2012) 161e176.

[20] P.K. Romano, B. Forget, The OpenMC Monte Carlo particle
transport code, Ann. Nucl. Energy 51 (2013) 274e281.

[21] J.R. Askew, F.J. Fayers, P.B. Kemshell, A general description of
lattice code WIMS, J. Br. Nucl. Energy Soc. 5 (1966) 546e585.

[22] T. Takeda, Y. Kanayama,Amultibandmethodwith resonance
interference effect, Nucl. Sci. Eng. 131 (1999) 401e410.

[23] S.E. Huang, K. Wang, D. Yao, An advanced approach to
calculation of neutron resonance self-shielding, Nucl. Eng.
Des. 241 (2011) 3051e3057.

[24] A. H�ebert, A mutual resonance shielding model consistent
with Ribon subgroup equations, in: PHYSOR 2004, Chicago
(IL), April 25e29, 2004.

[25] M.L. Williams, Correction of multigroup cross sections for
resolved resonance interference in mixed absorbers, Nucl.
Sci. Eng. 83 (1993) 37e49.

[26] G. Chiba, A combined method to evaluate the resonance self
shielding effect in power fast reactor fuel assembly
calculation, J. Nucl. Sci. Technol. 40 (2003) 537e543.

[27] K. Kim, M.L. Williams, Preliminary assessment of resonance
interference consideration by using 0-D slowing down
calculation in the embedded self-shielding method, Trans.
Am. Nucl. Soc. 109 (2012).

[28] K.S. Kim, S.G. Hong, A new procedure to generate resonance
integral table with an explicit resonance interference for
transport lattice codes, Ann. Nucl. Energy 38 (2011) 118e127.
[29] S. Peng, X. Jiang, S. Zhang, D. Wang, Subgroup method with
resonance interference factor table, Ann. Nucl. Energy 59
(2013) 176e187.

[30] D.J. Powney, T.D. Newton, Overview of the WIMS 9
Resonance Treatment, Serco Assurance, Dorchester, 2004.

[31] E. Wehlage, D. Knott, V.W. Mills, Modeling resonance
interference effects in the lattice physics code LANCER02, in:
Proceedings of Mathematics and Computational Methods
Applied to Nuclear Science & Engineering (M&C) 2005,
Avignon (France), September 12e15, 2005.

[32] Y. Liu, W. Martin, M. Williams, K.S. Kim, A full-core
resonance self-shielding method using a continuous-energy
quasieone-dimensional slowing-down solution that
accounts for temperature-dependent fuel subregions and
resonance, Nucl. Sci. Eng. 180 (2015) 247e272.

[33] Y. Liu, W.R. Martin, K.S. Kim, M.L. Williams, Modeling
resonance interference by 0-D slowing-down solution with
embedded self-shielding method, in: Proceedings of
Mathematics and Computational Methods Applied to
Nuclear Science & Engineering (M&C) 2013, Sun Valley (ID),
May 5e9, 2013.

[34] S. Choi, A. Khassenov, D. Lee, Resonance self-shielding
method using resonance interference factor library for
practical lattice physics computations of LWRs, J. Nucl. Sci.
Technol. (2015). Available from: http://dx.doi.org/10.1080/
00223131.2015.1095686.

[35] L. Mao, R. Sanchez, I. Zmijarevic, Considering the up-
scattering in resonance interference treatment in APOLLO3,
in: Proceedings of Mathematics and Computational Methods
Applied to Nuclear Science & Engineering (M&C) 2015,
Nashville (TN), April 19e23, 2015.

[36] A. H�ebert, Applied Reactor Physics, Presses Inter
Polytechnique, 2009.

[37] H. Zhang, H. Wu, L. Cao, An acceleration technique for 2D
MOC based on Krylov subspace and domain decomposition
methods, Ann. Nucl. Energy 38 (2011) 2742e2751.

[38] F. Leszczynski, Neutron resonance treatment with details in
space and energy for pin cells and rod clusters, Ann. Nucl.
Energy 14 (1987) 589e601.

[39] Y. Ishiguro, H. Takano, PEACO: a Code for Calculation of
Group Constant of Resonance Energy Region in
Heterogeneous Systems, JAERI, 1971.

[40] P.H. Kier, A.A. Robba, Rabble, a Program for Computation of
Resonance Absorption in Multiregion Reactor Cells, 1967.

[41] R.J.J. Stamm’ler, HELIOS Methods, Studsvik Scandpower,
Waltham, 2001.

[42] E. Sartori, Standard Energy Group Structures of Cross Section
Libraries for Reactor Shielding, Reactor Cell and Fusion
Neutronics Applications: VITAMIN-J, ECCO-33, ECCO-2000
and XMAS, JEF/DOC-315, Revision 3, NEA Data Bank, Gif-sur-
Yvette Cedex, France, 1990.

[43] L. He, H. Wu, L. Cao, Y. Li, Improvements of the subgroup
resonance calculation code SUGAR, Ann. Nucl. Energy 66
(2014) 5e12.

[44] L. Cao, H. Wu, Q. Liu, Q. Chen, Arbitrary geometry resonance
calculation using subgroup method and method of
characteristics, in: Proceedings of Mathematics and
Computational Methods Ap plied to Nuclear Science &
Engineering (M&C) 2011, Riode Janeiro (Brazil),May8e12, 2011.

[45] R.D. Mosteller, Computational Benchmarks for the Doppler
Reactivity Defect, Joint Benchmark Committee of the
Mathematics and Computation, Radiation Protection and
Shielding, and Reactor Physics Divisions of the American
Nuclear Society, 2006.

[46] E.E. Sunny, F.B. Brown, B.C. Kiedrowski, W.R. Martin,
Temperature effects of resonance scattering for epithermal
neutrons in MCNP, in: PHYSOR 2012, April 15e20, 2012.
Knoxville (TN).

http://refhub.elsevier.com/S1738-5733(16)00068-1/sref7
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref7
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref8
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref8
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref8
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref8
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref9
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref9
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref9
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref9
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref9
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref9
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref9
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref10
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref10
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref10
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref10
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref11
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref11
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref11
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref11
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref12
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref12
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref12
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref13
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref13
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref13
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref13
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref13
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref13
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref14
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref14
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref14
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref14
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref15
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref15
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref15
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref15
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref15
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref16
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref16
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref16
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref17
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref17
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref17
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref17
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref18
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref18
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref18
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref18
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref19
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref19
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref19
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref19
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref20
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref20
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref20
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref21
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref21
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref21
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref22
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref22
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref22
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref23
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref23
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref23
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref23
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref24
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref24
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref24
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref24
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref24
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref25
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref25
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref25
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref25
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref26
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref26
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref26
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref26
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref27
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref27
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref27
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref27
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref28
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref28
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref28
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref28
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref29
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref29
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref29
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref29
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref30
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref30
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref31
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref31
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref31
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref31
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref31
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref31
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref31
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref31
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref32
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref32
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref32
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref32
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref32
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref32
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref32
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref33
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref33
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref33
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref33
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref33
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref33
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref33
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref33
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref33
http://dx.doi.org/10.1080/00223131.2015.1095686
http://dx.doi.org/10.1080/00223131.2015.1095686
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref35
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref35
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref35
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref35
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref35
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref35
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref35
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref35
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref36
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref36
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref36
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref37
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref37
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref37
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref37
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref38
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref38
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref38
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref38
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref39
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref39
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref39
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref40
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref40
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref41
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref41
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref42
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref42
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref42
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref42
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref42
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref43
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref43
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref43
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref43
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref44
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref44
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref44
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref44
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref44
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref44
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref44
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref45
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref45
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref45
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref45
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref45
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref46
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref46
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref46
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref46
http://refhub.elsevier.com/S1738-5733(16)00068-1/sref46
http://dx.doi.org/10.1016/j.net.2015.12.015
http://dx.doi.org/10.1016/j.net.2015.12.015

	Resonance Elastic Scattering and Interference Effects Treatments in Subgroup Method
	1. Introduction
	2. Theory
	2.1. Subgroup method
	2.2. The resonance elastic scattering effect correction
	2.2.1. The asymptotic scattering kernel
	2.2.2. The conventional free gas model
	2.2.3. DBRC
	2.2.4. Resonance elastic scattering correction in subgroup method

	2.3. The resonance interference effect correction
	2.3.1. The Bondarenko iteration method
	2.3.2. Fast RIF method


	3. Numerical results
	3.1. The resonance elastic scattering effect correction
	3.2. The resonance interference effect correction
	3.3. The combined resonance elastic scattering and interference effects corrections

	4. Conclusions
	Conflicts of interest
	Acknowledgments
	References


