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Abstract – This paper describes Daubechies’ wavelet method (DWM) for the discretization of the angular
variable in the neutron transport equation. Two special features are introduced: (a) the azimuthal angle is
discretized using the Daubechies’scaling function as the basis function, while the polar angle is decoupled
and discretized using the discrete ordinates in a standard manner, and (b) the construction of Daubechies’
wavelets on an interval is used to get around the edge effect between subdomains in the angular variable.
In addition, two acceleration methods, namely, coarse mesh rebalance and coarse mesh finite difference,
are implemented in DWM. The test results on several benchmark problems indicate that DWM described
in this paper is capable of treating transport problems exhibiting angularly complicated behaviors, effec-
tive in mitigating ray effect, and versatile in handling transport phenomena in a variety of structured
media.

I. INTRODUCTION

Over the past decades, many numerical methods have
been developed to discretize the angular variable in the
neutron transport equation, such as the discrete ordinates
~SN ! method and the spherical harmonics ~PN ! method.
In recent years, some nonstandard angular discretization
schemes have been developed, such as the spectral method
using Walsh functions,1 the Jacobi polynomial approxi-
mations based on Chebyshev polynomials ~TN ! and ul-
traspherical ~UN ! polynomials,2 and the wavelet function
method based on the lifting scheme.3,4 In this study,
we discretize the angular variable in the transport equa-
tion by using the Daubechies’ wavelet function.5 This
Daubechies’ wavelet method ~DWM! is based on the
normal tensor product form of angular space and uses
the orthonormal wavelets as basis functions. Without the

lifting scheme, this kind of wavelet basis can be used
directly with a known orthonormal expression in the an-
gular expansion. DWM is similar to the PN method, but
the basis functions are the Daubechies’ scaling func-
tions, which construct the wavelet functions. Another
important difference is that the expansion of the angular
variable is restricted locally, in the compact support of
basis functions, rather than in an infinite and periodic
space. The solution can also be expressed in continuous
functional form, but the accuracy depends on the distri-
bution of discrete scaling functions.

Wavelets and wavelet transforms were actively de-
veloped in the last two decades. Practical applications
implementing wavelets are related to the Fourier and
windowed Fourier transforms. The wavelet functions are
generated by dilation and translation operations and have
the powerful property of localization in space. This prop-
erty may be utilized to describe the angular distribution
accurately, especially for some irregular distributions*E-mail: nzcho@kaist.ac.kr
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discovered in recent investigations.6,7 In this paper, the
Daubechies’ scaling functions, which were constructed
in early 1990s, are selected as the basis functions.

This paper builds upon the previous works8,9 for
solving neutron transport problems and describes in de-
tail the methodology of DWM. The tensor product form
for the two-dimensional angular variable discretization
is applied as an approximation to the exact spherical
form. This form of angular definition is feasible for both
normal two-dimensional wavelet expansion and decou-
pling of the angular variable discretizations in two direc-
tions. To make the methodology description complete,
the basic theory of Daubechies’ wavelets and their mod-
ified forms on the interval are given in detail in this
paper, together with the approach of calculating wavelet
function values. In this paper, a practical form of DWM
is given, which is stable, accurate, and efficient. DWM is
verified by comparing its solutions to those of the CRX
code,10 which is based on the method of characteristics
~MOC!. In addition to the source iteration scheme for
the numerical solution of DWM, two acceleration meth-
ods, coarse mesh rebalance ~CMR! and coarse mesh fi-
nite difference ~CMFD!, are implemented.

The paper is organized as follows. In Sec. II, the
basic theory of wavelets, especially the Daubechies’wave-
lets, is given. Both the properties and the related calcu-
lations are described in this section. DWM is deduced in
detail in Sec. III, resulting in the final form of the decou-
pled transport equation, in which the polar angle is treated
in discrete ordinates and the azimuthal angle in the
Daubechies’ scaling function expansion, respectively. The
acceleration methods, CMR and CMFD, are also formu-
lated in this section. Several numerical tests are given in
Sec. IV to demonstrate the capability of DWM. Finally,
Sec. V provides the conclusions of the study.

II. FUNDAMENTALS OF WAVELET THEORY

II.A. The Concept of Wavelets

Wavelets were first implemented in the area of sig-
nal processing. The wavelet functions were translated
and dilated from a single function, and the analysis was
performed by using the wavelet functions to weight the
integration of the signal. This process was named the
wavelet transform.

The wavelet functions are defined by a dilation and
translation operation such as

cn, k � 2n02c~2nx � k! ~1!

for some c � L2~R! and ~n, k! � Z 2. Z and R denote the
set of integers and real numbers. L2~R! denotes the space
of measurable, square-integrable functions.

The wavelet functions are generated from the scal-
ing functions fn,k~x!, which have the same form

fn, k � 2n02f~2nx � k! ~2!

for some f � L2~R!. Suppose we define

Vn � closure^fn, k : k � Z& ~3!

and

Wn � closure^cn, k : k � Z& ; ~4!

then, the scaling functions and the wavelet functions have
the following subspace relations:

fn, k � Vn , ~5!

cn, k � Wn , ~6!

. . .V�1 � V0 � V1 � V2. . . , ~7!

Vn � Vn�1 � Wn�1 , ~8!

�
n

Vn � L2~R! , ~9!

and

�nWn � L2~R! , ~10!

where � stands for orthogonal sum.
From Eq. ~8!, we have

Vn � Vn�m � Wn�m � {{{ � Wn�2 � Wn�1 . ~11!

Thus, a wavelet decomposition at scale n becomes

fn~x! � fn�m~x! � (
j�n�m

n�1

gj ~x! , fj � Vj , gj � Wj

~12!

or

fn~x! � (
k

an, k fn, k~x!

� (
k

an�m, k fn�m, k~x! � (
j�n�m

n�1

(
k

bn�m, k cj, k~x! ,

~13!

where fn~x! represents the function f at the single scale n.
The second expression gives a representation of the func-
tion f in multiscale.

If we define f � V0, c � W0, and V1 � V0 � W0, the
following two-scale relations hold:

f~x! � (
k

ck f~2x � k! ~14!

and

c~x! � (
k

dk f~2x � k! . ~15!
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If the two-scale relation is restricted by finite sums, the
scaling function and wavelet function have compact sup-
ports. In addition, if c is required to generate orthonor-
mal bases, the relationship of expansion coefficients
becomes

dk � ~�1!kc1�k . ~16!

As described above, various wavelets have been con-
structed according to the basic wavelet concept. Among
them, the Daubechies’wavelets are employed in this study.

II.B. Definition and Properties of
Daubechies’ Wavelets

Daubechies discovered that it was possible to de-
velop a wavelet with desired properties suitable to a spe-
cific problem. Based on the discrete wavelet transform,
a new set of compactly supported orthonormal wavelets
was constructed. They are named Daubechies’ wavelets,
for which the scaling functions fn,k~x! and wavelet func-
tions cn,k~x! are represented as

fn, k~x! � (
j�2k

2N�2k�1

cj�2k fn�1, j ~x! ~17!

and

cn, k~x! � (
j�2k�2N�2

2k�1

~�1! jc1�j�2k fn�1, j ~x! , ~18!

where n is called dilation order and N is called Daubechies
order.

The Daubechies’ wavelets, including both scaling
functions and wavelet functions, have the following
properties:

support ^fn, k~x!& � @2�nk, 2�n~k � 2N � 1!# , ~19!

support ^cn, k~x!& � @2�n~k � 1 � N !, 2�n ~k � N !# ,

~20!

fn, k , cn, k � C l~N ! �
space of Hölder continuous
functions with exponent ,

~21!

�fn, k~x!fn, l ~x! dx � dkl , ~22!

�cn, k~x!cm, l ~x! dx � dmn dkl , ~23!

and

�cn, k~x!x m dx � 0 . ~24!

From Eqs. ~19! and ~20!, we know that the supporting
region is related to the dilation order n and Daubechies

order N. Also, we know from Eq. ~21! that a large
Daubechies order N produces a smoother distribution of
scaling functions and wavelet functions. Figure 1 shows
the scaling function and its corresponding wavelet func-
tion for Daubechies order N � 2 and N � 4. The orthog-
onality conditions in Eqs. ~22! and ~23! are very important
because they are the bases to pick up the individual
moment from coupled expansion coefficients in the an-
gular discretization. Equation ~24! is the vanishing mo-
ments condition for the wavelets, which determines the
Daubechies’ coefficients ck . The coefficients are calcu-
lated by multiresolution analysis. The details are avail-
able in Ref. 5. Therefore, only the results are taken from
the reference. In Table I, the coefficients for Daubechies
order N � 2 and N � 4 are given.

II.C. The Daubechies’ Wavelets on an Interval

To apply the Daubechies’ scaling function to expand
the angular variable, the basis functions are defined on
an interval. Generally, a unit interval is considered with-
out loss of generality. However, from Eq. ~19!, we find
that the supporting region is related to the dilation order
and Daubechies order, which makes them overlap the
intervals. This requires a special treatment. Figure 2 il-
lustrates the distribution of scaling functions on a unit
interval for Daubechies order N � 2 and dilation order
n � 3.

A technique to restrict the wavelets on an interval is
to consider the “wrapped” wavelets,11 which requires
only simple transformation of known scaling functions
and wavelet functions. It is a process of periodic trans-
formation, which considers different contributions from
translations and truncates the wavelets that overlap the
interval periodically. Although it is simple to use, it re-
quires the expanded functions to be periodic; i.e., it forces
the values of the unknown functions to be equal at two

TABLE I

Coefficients ck , k � 1, . . . , 2N � 1 for N � 2 and N � 4

k ck

N � 2 0 0.482962913
1 0.836516303
2 0.224143868
3 �0.129409522

N � 4 0 0.032223101
1 �0.012603967
2 �0.099219544
3 0.297857796
4 0.803738752
5 0.497618668
6 �0.029635528
7 �0.075765715
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edges. This phenomenon is called the edge effect. It may
significantly change the values of unknown functions at
the interface between two regions.

To avoid the edge effect, we use the Daubechies’
wavelets on the interval constructed by Cohen,
Daubechies, and Vial.12 The main idea is to retain the
wavelets inside the interval with the ones overlapping
the interval removed. Then, the wavelets on the bound-
aries are constructed based on the fast wavelet trans-
form. We start by illustrating the construction on the
half line @0,`! and assume the wavelets are supported
on @0,`!.

Define the boundary scaling function for dilation
order n � 0 as

f0
left~x! � (

k��`

N�2

f~x � k! � (
k��N�1

N�2

f~x � k! ; ~25!

Fig. 1. Distribution of scaling function and wavelet function: ~a! ~N � 2! and ~b! ~N � 4!.

Fig. 2. Distribution of original scaling function for N � 2
and n � 3 on a unit interval.
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then, we know that the boundary scaling function has
compact support and is orthogonal to all the interior scal-
ing functions f0,k . In the same way, we can also get the
boundary scaling function f0

right on the other half line
~�`,0# . The boundary scaling functions f0

left , f0
right and

interior scaling functions f0,k ~that are local inside the
interval! are used to construct a new set of scaling func-
tions, the Daubechies’ scaling functions on the interval.

Usually, we expect there to be 2n ~n . 0! scaling
functions on the interval. This requires more than one
boundary scaling function on each side, where the num-
ber is related to the Daubechies’ order N; i.e., the bound-
ary scaling functions are defined as fn, k

left and fn, k
right on the

left and right sides with the index k standing for the
integers in @0, N�1# and @�N, �1# , respectively. Cohen,
Daubechies, and Vial12 proved that the following two-
scale relations hold between Daubechies’ wavelets on
the interval:

fn, k
left � (

l�0

N�1

Hk, l
left fn�1, l

left � (
m�N

N�2k

hk, m
left fn�1, m , ~26!

cn, k
left � (

l�0

N�1

Gk, l
left fn�1, l

left � (
m�N

N�2k

gk, m
left fn�1, m , ~27!

fn, k
right � (

l��N

�1

Hk, l
right fn�1, l

right � (
m��N�1

�N�1�2k�2

hk, m
right fn�1, m ,

~28!

and

cn, k
right � (

l��N

�1

Gk, l
right fn�1, l

right � (
m��N�1

�N�1�2k�2

gk, m
right fn�1, m ,

~29!

where

fn,k , cn,k � scaling function and wavelet
function, respectively

Hk, l , hk, l ,Gk, l , gk, l � filter coefficients constructed by
Daubechies.

Table II shows some examples for Hkl , hkl , Gkl , and gkl .
For Daubechies order N � 2 and dilation order n � 3, the
distribution of the new scaling functions is illustrated in
Fig. 3.

II.D. Related Calculations of Daubechies’
Scaling Function

The basis functions are the starting point for the
calculation of the Daubechies’ scaling functions. Unfor-
tunately, the Daubechies’ scaling functions cannot be

TABLE II

Coefficients Hk, l , hk, l , Gk, l , and gk, l for Left and Right Edges ~N � 2!

Hk, l or hk, l Gk, l or gk, l Hk, l or hk, l Gk, l or gk, l

l Left Side l Right Side

k � 0 0 0.60333 �0.79654 k � �2 �5 0.44315 0.23156
1 0.69090 0.54639 �4 0.76756 0.40107
2 �0.39831 �0.25879 �3 0.37496 �0.71758

k � 1 0 0.03752 0.01004 �2 0.19015 �0.36391

1 0.45733 0.12235 �1 �0.19423 0.37172

2 0.85009 0.22743 k � �1 �3 0.23039 �0.53982
3 0.22382 �0.83660 �2 0.43490 0.80142
4 �0.12922 0.48301 �1 0.87051 �0.25751

Fig. 3. Distribution of modified scaling function for N �
2 and n � 3 on a unit interval.
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expressed analytically. Therefore, discrete values of the
scaling functions are generated by using the basic two-
scale equation with known Daubechies’ coefficients.

Here we take the calculation of N�2 for an example.
In this case, the number of ck is four. Considering the val-
ues at the edges of the scaling functions being equal to
zero, there are only two values to be determined as

f~1! � c0 f~2! � c1 f~1! ~30!

and

f~2! � c2 f~2! � c3 f~1! . ~31!

In matrix form they can be rewritten as

F � LF . ~32!

An iteration scheme is applied as

Fl�1 � LFl , ~33!

and the values of f~x! at the integers are obtained by
adding a normalization condition

(
k

f~k! � 1 . ~34!

Then, we can get the values of the scaling function at
other points recursively from Eq. ~14!. With the discrete
values of the scaling function, we can directly calculate
the values of the boundary functions at the integers and
recursively generate the values at other points according
to Eqs. ~26! and ~28!. The values with fine refinements
are required for the numerical integrations in Sec. III.

III. DAUBECHIES’ WAVELET METHOD

III.A. Angular Discretization Scheme in DWM

In this paper, the neutron transport process is de-
scribed by the following steady-state linear Boltzmann
equation for the angular flux F~r, V, E !:

V¹F~r, V, E ! � St F~r, V, E !

� qf ~r, V, E ! � qs~r, V, E ! � qex ~r, V, E ! , ~35!

where r, V, and E stand for the spatial, angular, and
energy variables, respectively; qf and qs are the fission
and scattering source terms:

qf ~r, V, E ! �
x~E !

4pk
�

0

`�
4p

nSf ~r, E ' !

� F~r, V', E ' ! dV' dE ' ~36!

and

qs~r, V, E ! ��
0

`�
4p

Ss~r, V' r V, E ' r E !

� F~r, V', E ' ! dV' dE ' , ~37!

where qex denotes the extra source term. All deductions
are based on the Cartesian geometry and multigroup ap-
proximation for the energy treatment. To make it trans-
parent in this paper, only the two-dimensional form is
presented here ~the three-dimensional form presents no
essential difference!. Then, the spatial and angular coor-
dinates in the leakage operator are defined as

V{¹ � ~Vx , Vy !{� ]

]x
,

]

]y�� Vx

]

]x
� Vy

]

]y
, ~38!

Vx � ~1 � m2 !102 cos w , ~39!

and

Vy � ~1 � m2 !102 sin w , ~40!

where m is the polar cosine in the axial direction and w is
the azimuthal variable in the radial direction.

Generally, the angular variables are defined on the
sphere with m and w. However, in the wavelet theory, the
two-dimensional wavelet expansion is usually repre-
sented by using the tensor product form as

f ~x, y! � (
k

(
l

fk, l fn, k~x!fn, l ~ y! , ~41!

where x � m and y � w.
This form has been proved theoretically correct for

high-dimensional bases of Daubechies’ scaling func-
tions and wavelet functions in the orthogonal spaces. In
this study, the angular discretization derives from the
same idea and assumes that the spherical angular vari-
ables can be represented in the orthogonal forms as

F~r, V, E ! � FP~r, m, E ! � FA~r, w, E ! , ~42!

where FP and FA are defined as the individual tensor of
angular flux with polar variable only and azimuthal vari-
able only, respectively. Based on this, the two-dimensional
expansion of angular flux is transformed to two one-
dimensional expansions. Encouraged by our previous
study,9 we use the decoupled angular approach, in which
the polar angle is treated in discrete ordinates ~SN discret-
ization! and the azimuthal angle in Daubechies’ scaling
function expansion. This scheme has been demonstrated
to be stable and accurate enough for the angular discret-
ization of the linear transport equation.9 Moreover, it is
highly efficient and stable compared to the direct two-
dimensional expansion form.

As with the PN method, DWM suffers from the dif-
ficulties treating the boundary conditions. The double
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PN method13 provides a means of expressing the bound-
ary conditions exactly, which may be also used in DWM.
A piecewise expansion of the angular flux is applied in
the azimuthal direction, which we refer to as the angular
subdomain scheme. This scheme consists of several sub-
domains in the azimuthal angular range at intervals of
every 90 deg. Therefore, at the boundary, the incident
and emergent angular fluxes are expressed separately,
and the boundary conditions are represented in the exact
form between the incident and emergent fluxes.

Based on the tensor product form of the angular
flux and the angular subdomain scheme, a coordinate
transformation must be performed in the angular defi-
nition. The scaling functions are restricted to a unit
interval; therefore, substitutions of the angular vari-
ables are taken as

Fg~r, m, w! �

⎩
⎪
⎨
⎪
⎧Fg

1�r, m,�p �
p

2
j�

Fg
2�r, m,�

p

2
j�

Fg
3�r, m,

p

2
j�

Fg
4�r, m, p �

p

2
j�

, ~43!

where m � @0,1# and j � @0,1# . Fg
1, Fg

2, Fg
3, and Fg

4

stand for the angular flux in the four quadrants of the
upper hemisphere.

The angular discretization starts with the treatment
of the polar variable, in which the discrete ordinates are

applied. The fully symmetric Gaussian quadrature set is
employed. We begin by integrating both sides of the neu-
tron transport equation as follows:

�dm$~V¹ � St !Fg~r, m, w! � Sg~r, m, w!% � 0 , ~44!

where for brevity we rewrite the source terms in the
form of Sg~r, m, w!.

Define

�
Dmm

Fg~r, m, w! dm � vm Fg, m~r, w! ~45!

and

�
Dmm

V¹Fg~r, m, w! dm � vm @V¹Fg~r, m, w!#m . ~46!

Then we obtain the following neutron transport equation
with only the azimuthal variable remaining:

~Vm¹ � St !Fg, m~r, w! � Sg, m~r, w! . ~47!

Now we use the Daubechies’ scaling functions to
expand the azimuthal variable as

Fg, m~r, V! � (
p�1

P

cg, mp~r!fn, p~w! , ~48!

where the set of fn, p consists of scaling functions inside
the interval and on the boundaries at scale n. The P de-
fines the total number of expansion coefficients ~equal to
2n !. The Galerkin method is then applied to determine
the expansion coefficients according to

�fn, p ' ~w! dw�~Vm¹ � St ! (
p�1

P

cg, mp~r!fn, p~w! � Sg, m~r, w!� � 0 , ~49!

and the final angular discretized form of the transport equation is given as follows:

(
p�1

P �Dx, mpp '
]cg, mp

]x
� Dy, mpp '

]cg, mp

]y �� St cg, mp ' � Sg, mp ' , ~50!

Dx, mpp ' � ~1 � mm
2 !102�cos w{fn, p~w!{fn, p ' ~w! dw

� 2n~1 � mm
2 !102�cos w{f~2nw � p!{f~2nw � p ' ! dw , ~51!

Dy, mpp ' � ~1 � mm
2 !102�sin w{fp~w!{fp ' ~w! dw

� 2n~1 � mm
2 !102�sin w{f~2nw � p!{f~2nw � p ' ! dw , ~52!
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and

Sg, mp ' ��fp ' ~w!Sg, m~r, w! dw � 2n02�f~2nw � p ' !{Sg, m~r, w! dw , ~53!

where Dx, mpp ' and Dy, mpp ' denote transformations of the leakage operator at the given Gaussian quadrature ~polar!
point m. They are calculated using the discrete values of the Daubechies’ scaling function given in Sec. II.D. The
trapezoidal method is used for the integration:

Dx, mpp ' � ~1 � mm
2 !102 (

i�1

I h

2
@cos wi�1{f~2nwi�1 � p!{f~2nwi�1 � p ' ! � cos wi{f~2nwi � p!{f~2nwi � p ' !# ,

~54!

Dx, mpp ' � 2n~1 � mm
2 !102 (

i�1

I h

2
@sin wi�1{f~2nwi�1 � p!{f~2nwi�1 � p ' ! � sin wi{f~2nwi � p!{f~2nwi � p ' !# ,

~55!

and

Sg, mp ' � 2n02 (
i�1

I h

2
@f~2nwi�1 � p ' !{Sg, m~r, wi�1! � f~2nwi � p ' !{Sg, m~r, wi !# . ~56!

The mesh size h is determined by the wavelet construction distance d ~taken as 2�8 ! and dilation order n; i.e.,
h � d02n . As a preprocessing step, all the integrations are calculated only once before the source iteration.

The angular discretized form of the neutron transport equation, as in Eq. ~50!, is a coupled partial differential
equation set with only spatial variables. There are many numerical methods to solve it. Here, we choose the least-
squares finite element method ~FEM! to discretize the spatial variables in Eq. ~50!. Wu and Ju14 developed a
least-squares FEM code that uses both rectangular and triangular meshes for different geometries. The least-squares
finite element variational formulation of Eq. ~50! can be written as

���Dx, mp 'p '

]cg, mp '

]x
� Dy, mp 'p '

]cg, mp '

]y
� St cg, mp '� �Dx, mp 'p '

]c 0

]x
� Dy, mp 'p '

]c0

]y
� St c

0� dxdy

� ���Sg, mp ' � (
p�1, p�p '

P �Dx, mpp '
]cg, mp

]x
� Dy, mpp '

]cg, mp

]y ��
� �Dx, mp 'p '

]c 0

]x
� Dy, mp 'p '

]c 0

]y
� St c

0� dxdy , ~57!

where cg,mn � V and all admissible c0 � V; V is a
subspace in Hilbert space H 1. Here, an iteration process
is added to calculate the wavelet expansion coefficients
cg,mp one by one.

The vacuum boundary condition and the reflective
boundary condition are given respectively as

Fg~rb , Vqin
! � 0 ~58!

and

Fg~rb , Vqin
! � Fg~rb , Vqref

! , ~59!

where qin and qref denote the incident quadrant and re-
flective quadrant, respectively, according to the location
of the boundary. In DWM, Eqs. ~58! and ~59! are rewrit-
ten in terms of the wavelet expansion coefficients as

cg, mp
qin

~rb ! � 0 , m � 1, M and p � 1, P ~60!

and

cg, mp
qin

~rb ! � cg, mp
qref

~rb ! , m � 1, M and p � 1, P . ~61!

III.B. Accelerations of DWM in X-Y Geometry

In this section, the accelerations are introduced to
the DWM solution. They are based on the within-group
equation15

~V¹ � St !Fg~r, V! ��dV' Sgg~r, V{V' !Fg~r, V' !

� Sg
e~r, V! , ~62!
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where

Sg
e~r, V! � qf, g~r, V! � qex, g~r, V!

� (
g '�g

�dV' Sgg ' ~r, V{V' !Fg ' ~r, V' ! ,

~63!

and the iteration scheme is written as

~V¹ � St !Fg
l�102~r, V!

� Sg
e~r, V! ��dV' Sgg~r, V{V' !Fg

l ~r, V' ! , ~64!

where l denotes the iteration index.
First, CMR ~Ref. 15! is applied. The CMR acceler-

ation method is extremely simple to apply regardless of
the discretization scheme for the transport equation.

By performing angular integration and spatial inte-
gration over coarse mesh cell i , we obtain the following
rebalance equation:

(
i '
�

Gii '

dG Jg, i
� � (

i '
�

Gii '

dG Jg, i
� ��

Vi

dV Sr, g, i OFg, i

� �
Vi

dV Sg, i
e , ~65!

where i ' is the index of a neighboring coarse mesh cell
and Sr, g is the removal cross section defined as

Sr, g � St, g � Ss, gg . ~66!

Jg
6 denotes the emergent and incident current along the

normal direction of the coarse mesh cell, and OFg is the
average scalar flux in the coarse mesh cell. In DWM,
the current is formulated as follows:

Jg, x
� � (

qout

�
�1

1

M1 � m2 dm�
w�qout

6cos w6{Fg~m, w! dw ,

~67!

Jg, y
� � (

qout

�
�1

1

M1 � m2 dm�
w�qout

6sin w6{Fg~m, w! dw ,

~68!

Jg, x
� � (

qin

�
�1

1

M1 � m2 dm�
w�qin

6cos w6{Fg~m, w! dw ,

~69!

and

Jg, y
� � (

qin

�
�1

1

M1 � m2 dm�
w�qin

6sin w6{Fg~m, w! dw ,

~70!

where qin and qout stand for the incident and emergent
quadrants, respectively, according to the given boundary.

Then, the updated angular flux in coarse mesh cell i
is given as

Fg
l�1~r, m, w! � fi Fg

l�102~r, m, w! , r � i , ~71!

and the CMR equation is derived easily as

�(
i '
�

Gii '

dG Jg, i
�, l�102 ��

Vi

dV Sr, g, i OFg, i
l�102� fi

� (
i '
�

Gii '

dG Jg, i '
�, l�102 fi ' � �

Vi

dV Sg, i
e . ~72!

The second method for acceleration is the CMFD
method.16,17 Different from CMR, the form of the CMFD
equations is similar to that of the usual finite difference
equation with cell-centered unknowns, but there is an
additional current correction factor.

In the CMFD method, the regional cross sections
and scalar fluxes are calculated as

OSrg, i �
(
k�i

Vk Srg, k OFg, k

OFg, i Vi

~73!

and

PDg, i �
OFg, i Vi

3 (
k�i

Vk Stg, k OFg, k

, ~74!

where

OFg, i �
(
k�i

Vk OFg, k

Vi

and Vi � (
k�i

Vk , ~75!

where OFg,k is the scalar flux of fine mesh cell k in the
coarse mesh cell i .

The current correction factor ZDg, i is defined as

ZDg, i � �
Jg, i � EDg, i ~ OFg, i�1 � OFg, i !

OFg, i�1 � OFg, i

, ~76!

where EDg, i is given as

EDg, i � 2
~Dg, i 0hi !~Dg, i�1 0hi�1!

Dg, i 0hi � Dg, i�1 0hi�1

~77!
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and Jg, i is the net current at the interface of nodes that
are supplied by the fine mesh calculation of DWM. Dif-
ferent from CMR, here the current is defined, for each
group, as

Jg, x � (
q
�

�1

1

M1 � m2 dm�
w�q

cos w{Fg~m, w! dw

~78!

and

Jg, y � (
q
�

�1

1

M1 � m2 dm�
w�q

sin w{Fg~m, w! dw ,

~79!

where q is the total quadrants according to the dimension
of calculation.

Define the updated angular flux in coarse mesh i as

Fg
l�1~r, m, w! �

OFg
l�1~r!

OFg
l�102~r!

Fg
l�102~r, m, w! , r � i .

~80!

The CMFD equation for coarse mesh cell i is written as

�(
i '
�

Gii '

dG~ EDi6102 6 ZDi6102 ! OFg, i '
l�1

� �(
i
�

Gii '

dG~ EDi6102 7 ZDi6102 ! � �
Vi

dV Sr, g, i� OFg, i
l�1

� �
Vi

dV Sg, i
e , ~81!

where i ' is the index of a neighboring coarse mesh cell.
From Eqs. ~71! and ~72! in the case of CMR, and

Eqs. ~80! and ~81! in the case of CMFD, we obtain the
updated angular flux of energy group g to provide the
within-group scattering source in the l � 1 iteration in
the transport equation.

IV. NUMERICAL TESTS AND RESULTS

Previous works8,9 indicated that DWM with the po-
lar SN and one-dimensional piecewise Daubechies’ scal-
ing function expansion scheme in the azimuthal angle is
the most efficient and stable form among the options of
using Daubechies’ wavelets in the angular discretiza-
tion. Therefore, it is determined as the final form of DWM.

In this paper, the method is verified against the MOC
code CRX, and additional calculations are done to reveal
the effect of different orders in the angular discretiza-
tion, the performance in a ray-effect problem, and the
validity and effectiveness of acceleration methods in the

wavelet-based angular discretization scheme. Also, a set
of case calculations is performed on a multicell structure
problem with a void region and different fuel loadings to
demonstrate the efficacy of DWM.

IV.A. Adams’ Problem

This is a two-region fixed-source problem that was
studied by Adams.6 The geometry is shown in Fig. 4, and
the cross sections are given in Table III. Reflective bound-
ary conditions are given in all sides. Figure 5 illustrates
the reference angular flux distribution ~at a latitude of
m � 0.33! at the given spatial point. It is irregular, peaky,
and discontinuous. In view of the capability of DWM in
representing the complicated azimuthal angular struc-
ture, this problem is solved by DWM.

By using DWM, we obtained the angular flux distri-
bution along the azimuthal direction at a latitude of m �
0.5774. Because of the difference of polar discretization,
here the comparison focuses on the angular distribution
rather than on the exact amplitude of the angular flux.
Figure 6 illustrates the angular distributions obtained by
DWM using Daubechies order N � 2. Higher dilation
order provides more accurate results of the angular flux
distribution.

Fig. 4. Geometry of Adams’ problem.

TABLE III

Cross Sections of Adams’ Problem

Source
~cm�3 s�1 !

St

~cm�1 !
Ss

~cm�1 !

Fuel 2p 0.141367 0.057843
Moderator 0.0 0.072774 0.008642
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Figure 7 gives the comparison of angular distribu-
tions for the Daubechies order N � 4. Compared with the
distributions obtained from low Daubechies order, we
note that the ones with higher Daubechies order perform
well even for the low dilation order. This is because the
basis function with higher Daubechies order is smoother
and more symmetric, as illustrated in Fig. 1b. However,
for higher dilation order, the results using different
Daubechies orders become closer. In addition, a compar-
ison of angular fluxes at point 1 for an azimuthal angle
of 45 deg is given in Fig. 8 to visually indicate its con-
vergence. With increase of the dilation order, the angular
flux tends to be convergent, however, with a slow rate.
This is due to the singular variation of the angular flux in
this problem.

Moreover, even for dilation order n � 5, the number
of unknowns to be determined is only 128 for a single
polar angle. Compared with hundreds of unknowns in
the SN method,6 we may say that DWM is more efficient
in representing complicated angular distributions.

Table IV gives the quantitative comparison of aver-
age scalar fluxes between DWM and CRX, which dem-
onstrates that the results of DWM are accurate and
reliable.

IV.B. Ray-Effect Problem

This problem ~originally known as the Watanabe-
Maynard Problem! is taken from Ref. 18 to verify the
accuracy of DWM for a ray-effect problem. This is a
fixed-source problem consisting of a void region and a
highly scattering medium. Figure 9 illustrates the geom-
etry and the cross sections. Figure 10a is a copy from

Ref. 18 that provides reference solutions by an inte-
gral transport theory method with several tracking
parameters. Figures 10b and 10c give the wavelet-
based solutions with different Daubechies orders N,
respectively.

DWM uses a piecewise continuous approximation
to the angular flux. This kind of method tends to mitigate
ray effects. However, unlike the PN method, DWM has
no complete rotational symmetry. Therefore, DWM can-
not eliminate ray effects completely. Based on the com-
parison of scalar flux distributions, it is ascertained that
ray effects arise in the wavelet-based angular discretiza-
tion scheme with low Daubechies order and dilation or-
der, although much weaker than in the reference solutions
using low tracking order. However, higher Daubechies
order and dilation order mitigate ray effects signifi-
cantly, because of their longer compact support and bet-
ter symmetry. Comparison of the solutions with different
polar orders indicates that ray effects are not sensitive to
the polar discretization.

IV.C. Accelerations in DWM

This problem is designed to test the effectiveness of
the acceleration methods implemented in DWM. The ge-
ometry is illustrated in Fig. 11, together with the fine
mesh divisions. Two-group cross sections of the fuel and
moderator are shown in Table V. Reflective boundary
conditions are given in all sides.

Fig. 5. Angular flux distribution from Adams6 with 512
quadrature points.

TABLE IV

Comparison of Regionwise Average Scalar Fluxes
of Adams’ Problem

Region Fuel Moderator

n � 3a, b N � 2c 30.019 29.213
N � 4 30.266 29.072

n � 4 N � 2 30.218 29.102
N � 4 30.344 29.021

n � 5 N � 2 30.315 29.041
N � 4 30.365 29.008

n � 6 N � 2 30.333 29.029
N � 4 30.372 29.003

CRX ~64,8!d 30.294 29.062
~32,8!e 30.273 29.076

aDialation order n in DWM.
bFour polar angles, 2n azimuthal unknowns per quadrant,

121 rectangular meshes.
cDaubechies order N in DWM.
d~64,8! angles per quadrant, 128 rays per unit cell ~0.63 �

0.63 cm!.
e~32,8! angles per quadrant, 128 rays per unit cell ~0.63 �

0.63 cm!.
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Table VI gives a comparison between the original
source iteration solution and acceleration solutions using
CMR and CMFD. For the within-group iteration, the
criterion used is 10�3, and no more than ten iterations

are required for all calculations. The stop criterion
used for keff is 10�5. From the results, we note that
both the CMR and CMFD are effective to accelerate
DWM, if the size of the coarse mesh cells is relatively

Fig. 6. Angular flux distribution at point 1 for ~a! N � 2 and n � 3, ~b! N � 2 and n � 4, ~c! N � 2 and n � 5, and
~d! N � 2 and n � 6.

TABLE V

Cross Sections of the Problem in Fig. 10

nSf

~cm�1 !
S1-1

~cm�1 !
S1-2

~cm�1 !
St

~cm�1 ! x

Group 1 Fuel 0.006203 0.178000 0.010020 0.196647 1.0Moderator 0.000000 0.199500 0.021880 0.222064

Group 2 Fuel 0.110100 0.001089 0.525500 0.596159 0.0Moderator 0.000000 0.001558 0.878300 0.887874
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Fig. 7. Angular flux distribution at point 1 for ~a! N � 4 and n � 3, ~b! N � 4 and n � 4, ~c! N � 4 and n � 5, and ~d! N � 4
and n � 6.

Fig. 8. Comparison of angular fluxes for several wavelet
orders at point 1 for 45-deg azimuthal angle. Fig. 9. Description of the ray-effect problem.
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large. However, with refinement of coarse meshes,
CMFD becomes more effective, while CMR loses ef-
fectiveness and eventually becomes nonconverging.

IV.D. Test of DWM in a Multicell Problem

A series of calculations is performed with DWM on
a multicell structure problem. A pin cell lattice consists
of a fuel rod and moderator. Four cell lattices construct
the multicell structure as illustrated in Fig. 12. The re-
flective boundary conditions are given at the left and
bottom sides, while the vacuum boundary conditions are
given at the top and right sides. Five cases are consid-
ered with three types of pin cells: UO2 fuel cell, mixed
oxide ~MOX! fuel cell, and void cell in which the fuel
rod position is made empty. Detailed descriptions of the
cases are illustrated in Fig. 13. Two-group cross sections
used are given in Table VII.

All calculations are based on quadratic triangular
mesh cells with a total of 504 finite elements and 1081
nodes. The same angular discretization is applied, where
the Daubechies order N is equal to 2, dilation order n is
equal to 3, and four discrete polar angles are used in the
upper hemisphere. Reference solutions are given by using
the CRX code, which is based on MOC. Table VIII gives
a detailed comparison between the wavelet-based solu-
tions and reference solutions. The results indicate that
they are in good agreement and DWM is versatile in
handling a variety of transport problems. As for com-
puter memory, this test problem requires .470 MB, and
.90% of the requirement is used to store the stiffness
matrix of every energy group and direction in the FEM
solution process.

Fig. 10. Scalar flux distribution along y � 5.625 cm
~a! in the reference solutions,18 ~b! using Daubechies order
N � 2, and ~c! using Daubechies order N � 4.

Fig. 11. Geometry of the acceleration test problem.
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V. CONCLUSIONS

We have described a new method discretizing the an-
gular variables in the neutron transport equation, which
uses the Daubechies’ scaling function as the basis func-
tion for expanding the azimuthal variable. The polar vari-
able is discretized by using discrete ordinates in a decoupled
form. In particular, the construction of Daubechies’wave-
lets on an interval is used to remove the edge effect
between subdomains in the angular variable. The good lo-

calization properties of Daubechies’wavelets suggest that
they have strong potential for high-order angular approx-
imations of irregular and challenging problems.

The results of the benchmark problems tested so far
indicate that in general larger dilation order provides
more accurate solutions with fixed Daubechies order.
Meanwhile, there are almost no differences between dif-
ferent Daubechies orders if the dilation order is high
enough. The acceleration methods implemented in DWM
are demonstrated to be both feasible and effective by

Fig. 12. Configuration of ~a! pin cell, ~b! multicell, and ~c! computational finite element meshes ~triangular meshes! for the
multicell.
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the numerical tests. Compared with CMR, CMFD be-
haves more stably with the refinement of coarse meshes
in the wavelet-based angular discretization scheme.

The test results also indicate that DWM is capable of
treating transport problems exhibiting angularly compli-

cated behaviors, effective in mitigating ~if not eliminat-
ing! ray effects and versatile in handling transport
phenomena in a variety of structured media.

As future work, investigations of alternative spatial
treatments are warranted in order to further reduce the
computational demands and memory requirements of the
scheme ~presently done by the FEM in this study!.

TABLE VI

Comparison of Acceleration Effects in DWM

Maximum Relative Error in Flux ~%!

keff Fuel Moderator
Number of

Outer Iterations CPU Time Speedup

SI 0.7831 — — 87 89.50 —

CMR
2 � 2a 0.7830 0.0048 0.0256 14 14.14 6.33
3 � 3 0.7830 0.0048 0.0252 24 18.88 4.74
4 � 4 0.7830 0.0048 0.0247 67 46.25 1.94
6 � 6 N. C.b N. C. N. C. N. C. N. C. N. C.

CMFD
2 � 2 0.7830 0.0048 0.0256 14 14.92 6.00
3 � 3 0.7830 0.0042 0.0252 10 11.00 8.14
4 � 4 0.7830 0.0048 0.0247 8 9.06 9.88
6 � 6 0.7830 0.0042 0.0247 6 6.98 12.82

aNumber of coarse mesh cells.
bN.C. is not convergent.

Fig. 13. Three types of pin cell and five cases of the multi-
cell structure problem.

TABLE VII

Cross Sections of the Multicell Structure

St nSf Sa Ssr1 Ssr2

Cross Sections of UO2 Fuel

Group 1 0.196647 0.006203 0.008627 0.178000 0.010020
Group 2 0.596159 0.110100 0.069570 0.001089 0.525500

Cross Sections of MOX Fuel

Group 1 0.379246 0.036451 0.033866 0.344903 0.000477
Group 2 1.149943 0.938410 0.745568 0.000000 0.404375

Cross Sections of Void

Group 1 0.000000 0.000000 0.000000 0.000000 0.000000
Group 2 0.000000 0.000000 0.000000 0.000000 0.000000

Cross Sections of Moderator

Group 1 0.237672 0.000000 0.000493 0.213045 0.024135
Group 2 0.864320 0.000000 0.009913 0.000779 0.853628
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