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1. Introduction

New concepts and advanced nuclear reactor core design requires
solving neutron transport equation on unstructured meshes
quickly and efficiently. Some methods, for example, the finite ele-
ment method (Cao and Wu, 2007), Monte-Carlo method, were well
developed for this purpose. But most of finite element methods
are coupled with SN method (Ju et al., 2007) or PN method (Cao and
u, 2004), which makes them very complicated and time consum-
ng. So they are effective in shielding calculation, but not suitable
or assembly burn up calculation. Monte-Carlo method is a statisti-
al method, which is totally different from deterministic methods.
t also requires large computational cost, especially for burn up
alculations.

The transmission probability method (TPM) is an efficient tool
or the assembly calculation of nuclear reactor. Many world-
ide used transport codes, for example, CASMO (Malte and Ake,

988) and DRAGON (Roy et al., 1994), make use of this method.
he geometries of these codes treated with are mostly rectangle
Stepanek et al., 1983; Häggblom et al., 1975) and hexagon meshes
Wasastjerna, 1979; Zhang, 2000) in two dimensions, and the cube
nd the hexagonal-z meshes (Marleau et al., 1990; Garcia, 2003)
n three-dimensions, which are all structured meshes. Wu et al.
2007) developed the TPM based on two-dimensional triangular

eshes. Numerical results show that this method is very effective
or 2D assembly calculation on irregular geometries. But 2D cal-
ulation is always not enough if the neutronics/thermo-hydraulics
oupling calculation is required to perform the core design because
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g neutron transport equation in

sion probability method (TPM) to solve the neutron transport equation in
geometry. The source within the mesh is assumed to be spatially uniform

ace, the constant and the simplified P1 approximation are invoked for the
ution. Based on this model, a code TPMTDT is encoded. It was verified
problems, in which the first two problems are in XYZ geometry and the
etry, and an unstructured geometry problem. The results of the present
f Monte-Carlo calculation method and Spherical Harmonics (PN) method.
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the axial power distribution of an assembly is very crucial for
thermo-hydraulics calculation. Thus, it is necessary to develop
three-dimensional TPM based on triangular-z meshes.

This paper derived the TPM for solving neutron transport equa-
tion in three-dimensional triangular-z meshes. Unlike the TPM
based on triangle meshes (Wu et al., 2007) in two-dimensional
geometry, the TPM for triangular-z geometry has to treat with axial
neutron flux as well as radial neutron flux. The angle of the outgoing
interface neutron flux of triangular-z meshes is divided into four
quadrants compared to two quadrants in triangle meshes in two
dimensions. The formula of simplified P1 approximation of axial

neutron flux in each quadrant is different to the formula for radial
neutron flux. Moreover, the calculation of leakage probability and
transmission probability for triangular-z geometry is more complex
than the triangle meshes. In triangular-z meshes, the discussion of
neutron flying for probability calculation depends on not only radial
variables but also the axial variables.

The remainder of this paper is organized as follow. The basic
equations of the TPM based on the triangular-z mesh are derived in
Section 2.1. The approximations of the interior neutron source and
interface neutron flux are described in Section 2.2. The calculation
of the leakage and transmission probabilities is given in Section
2.3. The numerical results for three 3D benchmark problems and an
unstructured geometry problem are given in Section 3. Conclusions
are summarized in Section 4.

2. Theoretical modal

2.1. Basic equations

Suppose, the 3D calculation region be divided into IE triangular-
z meshes and suppose the material in each mesh be homogeneous.

http://www.sciencedirect.com/science/journal/00295493
mailto:gmliusy@gmail.com
dx.doi.org/10.1016/j.nucengdes.2008.03.002
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Fig. 1. Neutron flying direction in triangular-z mesh.

For each mesh, the neutron integral transport equation is written
as:

˚g(�r, �̋ ) =
∫ Rs

0

Qg( �r′, �̋ ) e−˙t,g RdR + ˚−
g (�rs′ , �̋ ) e−˙t,g Rs (1)

where ˚g(�r, �̋ ) is the neutron angular flux at �r in direction �̋ ;

Qg( �r′, �̋ ) is the neutron source at �r′ in direction �̋ and ˚−
g (�rS′ , �̋ )

is the incoming neutron angular flux at �rS′ of surface S′. The integral
variable R, which is the length of neutron flying in the triangular-z
mesh, equals to |�r − �r′| and the variable RS, which is the total length
of the neutron flying in this mesh, equals to |�r − �rS′ |. Both R and RS
are shown as in Fig. 1(a). The angles crossed by three side surfaces
of triangular-z mesh are denoted by ˛, ˇ and � , respectively shown
in Fig. 1(c).
For clearly, take the side surface BB′CC′ as shown in Fig. 1(b),
as example. Set the outward normal �n+ of the side surface be the
basis axes. Denote the angle between the direction �̋

xy, which is

the projection of neutron flight direction �̋ on the X-Y plane, and
the normal �n+ by ϕ as shown in Fig. 1(c). Denote the angle between
�̋ and the top surface by � as shown in Fig. 1(a). Then the direction
�̋ can be defined by ϕ and �.

For convenience, the neutron flying outward direction of this
side surface can be divided into four quadrants according to ϕ and
�. They are denoted by 1, 2, 3, 4 as shown in Fig. 2(a). All quadrants
are defined as follows:

• Quadrant 1 (q=1): 0 ≤ ϕ ≤ �/2, 0 ≤ � ≤ �/2;
• Quadrant 2 (q=2): −�/2 ≤ ϕ ≤ 0, 0 ≤ � ≤ �/2;
• Quadrant 3 (q=3): −�/2 ≤ ϕ ≤ 0, −�/2 ≤ � ≤ 0;
• Quadrant 4 (q=4): 0 ≤ ϕ ≤ �/2, −�/2 ≤ � ≤ 0.

In each quadrant, the angular flux will be approximated with
simplified P1 approximation in the angle variable and homoge-
neous in the special variable.

Fig. 2. Quadrant division of the neutron flying direction. (a) Quadrant division of
neutron flying direction on the side surface. (b) Quadrant division of neutron flying
direction on the top surface.
Design 238 (2008) 2285–2291

The flying direction of the outward neutron flux of the top sur-
face and the incoming neutron flux of the side surface is the similar
as shown in Fig. 2(b).

For simplicity, denote the three side surfaces, top and bottom
surface by 1 (surface BB′CC′), 2 (side surface AA′CC′), 3 (side surface
AA′BB′), 4 (top surface ABC), and 5 (bottom surface A′B′C′). In the
following, the surface is denoted by k (k = 1–5).

Multiply both sides of Eq. (1) by d �̋ dSk and ( �̋ · �n+
k

)d �̋ dSk,
respectively, take the integral over the surface k at quadrant q, the
outward neutron flux and current are deduced as:

˚+
k,q

=
∫

Sk

dSk

∫
q

d �̋
∫ RS

0

Q (�r′, �̋ ) e−˙tRdR

+
∑
k′

k′ �=k

∫
Sk′

dSk′

∫
q′

˚−(�rk′ , �̋ ) e−˙tRS
( �̋ · n−

k′ )

( �̋ · n+
k

)
d �̋ (2)

J+
k,q

=
∫

Sk

dSk

∫
q

( �̋ · n+
k

)d �̋
∫ RS

0

Q (�r′, �̋ ) e−˙tRdR

+
∑
k′

k′ �=k

∫
Sk′

dSk′

∫
q′

˚−(�rk′ , �̋ ) e−˙tRS ( �̋ · n−
k′ )d �̋ (3)

In each triangular-z mesh, the neutron balance equation is

¯̊ e = Q̄e

˙t,e
− Je

˙t,eVe
(4)

where Ve is the volume of the triangular-z mesh ‘e’; ¯̊ e is the average
flux of the mesh ‘e’; ˙t,e is the total cross-section of material in the
mesh ‘e’; Q̄e is the average neutron source of the mesh ‘e’ and Je is
the net outward neutron flow through the mesh ‘e’ boundaries. Eqs.
(2)–(4) are the basic equations of the TPM based on the triangular-z
mesh.

2.2. Approximation

The interior source within a triangular-z mesh is assumed to
be constant in spatial distribution and isotropic in angular dis-
tribution. The surface neutron angular flux of each quadrant is

approximated with simplified P1 approximation in the angle vari-
able and homogeneous in the special variable. The neutron angular
flux distribution of the side surface k at quadrant q is expanded
as

˚k,q(�rs, �̋ ) = 1
4�

[f (00)
k,q

+ 3f (10)
k,q

cos � cos ϕ] (5)

The neutron angular flux distribution of the top and bottom
surface is expanded as

˚k,q(�rs, �̋ ) = 1
4�

[f (00)
k,q

+ 3f (10)
k,q

sin �] (6)

where f (00)
k,q

and f (10)
k,q

are the expansion coefficients. The expression
of the expansion coefficients can be deduced as

f (00)
k,q

=
8(2˚+

k,q
− 3J+

k,q
)

Sk
(7)

f (10)
k,q

=
8(2J+

k,q
− ˚+

k,q
)

Sk
(8)
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2.3. Probability calculation

Substituting Eqs. (5)–(8) into Eq. (2) and Eq. (3), respectively, the
outward neutron flux and current are expressed as

˚+
k,q

= VeQ̄eE(0)
k,q

+
∑
k′ �=k

[(8T (00)
k′,k − 12T (10)

k′,k )˚+
k′,q′

+(24T (10)
k′,k − 12T (00)

k′,k )J+
k′,q′ ] (9)
J+
k,q

= VeQ̄eE(1)
k,q

+
∑
k′ �=k

[(8T (01)
k′,k − 12T (11)

k′,k )˚+
k′,q′

+(24T (11)
k′,k − 12T (01)

k′,k )J+
k′,q′ ] (10)

where E(l)
k,q

is the leakage probability of the surface k at quadrant

q and T (l′l)
k′,k is the transmission probability from surface k′ to k. The

superscripts (0) and (1) denote the neutron flux and the neutron
current. The superscripts (0 0), (0 1), (1 0), (1 1) indicate the trans-
mission of flux to flux, flux to current, current to flux and current
to current, respectively. The probability formulae can be derived as

E(l)
k,q

= 1
4�Ve

∫
sk

∫
q

∫ RS

0

( �̋ · �n+
k

)
l
e−˙tRdRd �̋ dSk (11)

Tl′l
k′k = 1

�Sk′

∫
Sk′

∫
q′

( �̋ · �n−
k′ )

(1+l′)

( �̋ · �n+
k

)
(1−l)

e−˙tRS d �̋ dSk′ (12)

It can be seen from the Eq. (11) that the calculations of leak-
age probability are integrals about the angular (d �̋ = cos �d�dϕ),

Fig. 3. Leakage probability calculation of surface 1 quadrant 1. (a) Case 1 of neutron flying
surface 1 quadrant 1. (c) Neutron flying from surface 2 to surface 1 quadrant 1.
Design 238 (2008) 2285–2291 2287

the surface area (dS or dSk′ ) and the length of neutron flying in the
triangular-z mesh (dR). The limits of the integral variable are differ-
ent depend on what the type of neutron flying in the triangular-z
mesh is. There are four types of neutron flying in the mesh: flying
from the top surface to the side surface, flying from the top surface
to the bottom surface, flying from the side surface to the side surface
and flying from the side surface to the top surface. The probability
calculation is similar for the four types. For simplicity, we only take

the type of neutron flying from the side surface to the side surface
as example for discussion. In this type, the probability formulae can
be expanded as

E(l)
k,q

= 1
4�Sk

∫ ϕ+

ϕ−

∫ s+

s−

∫ h+

h−

∫ �+

�−

∫ Rs

0

cosl ϕ cosl � e−˙tRdRd�dhdsdϕ

(13)

Tl′l
k′k,q′q= 1

�Sk′

∫ ϕ+

ϕ−

∫ s+

s−

∫ �+

�−

∫ h+

h−
cosl ϕ cos1+l+l′ � e−˙tRS dhd�dsdϕ

(14)

2.3.1. Leakage probability calculation
The leakage probability of each side surface at each quadrant

contains many complex cases. Take an example; the leakage prob-
ability of the surface 1 quadrant 1 includes two contributions. One
is neutron flying from surface 2 to surface 1 quadrant 1 as shown
in Fig. 3(a). The other one is from surface 3 to surface 1 quadrant 1.
Because of the difference of integral limits of variable ϕ and s, the
second part consists of two different cases as shown in Fig. 3(b) and
(c).

from surface 3 to surface 1 quadrant. (b) Case 2 of neutron flying from surface 3 to
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Fig. 4. Transmission probability calculation of neutron flying from surface 2 to surface 1
of neutron flying from surface 2 quadrant 4 to surface 1 quadrant 2. (c) Case 2 of neutron
surface 2 quadrant 3 to surface 1 quadrant 2.

The limits of the above three cases are as follows:

(1) � ∈[0, (�/2)−�], s ∈[0, c cos(ϕ−˛)/cos ϕ], h ∈[l0 tan �, H],
� ∈[−arctan(H/l0), 0];

(2) ϕ ∈[(�/2)−� , �/2], s ∈[0, b], h ∈[l0 tan �, H], � ∈[−arctan(H/l0), 0];

Fig. 5. Configuration
. (a) Neutron flying from surface 2 quadrant 4 to surface 1 quadrant 1. (b) Case 1
flying from surface 2 quadrant 4 to surface 1 quadrant 2. (d) Neutron flying from

(3) ϕ ∈[0, (�/2)−�], s ∈[b−(a cos(ϕ−�))/cos ϕ, b], h ∈[l0 tan �, H],
� ∈[−arctan(H/l0), 0];

and RS = l0/cos �.
Substitute the above expressions into the integral variables and

limits in Eq. (13), the total leakage probability of the surface 1 quad-

of problem 4.
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Table 3
Comparison of Keff and control rod worth for problem 2

Method Case 1 Case 2 Case 3 CR-worth CRP-worth

Monte-Carlo 0.9709 1.0005 1.0214 3.05E−02 2.03E−02
a

G. Liu et al. / Nuclear Engineerin

Table 1
Comparison of Keff and control rod worth for problem 1

Method Case 1 Case 2 CR-worth

Monte-Carlo 0.9732 0.9594 1.47E−02
MARK/PN +0.637a +0.553 +6.12
TPMTDT +0.435 +0.462 −2.04

a Relative differences from Monte-Carlo (%).

rant 1 is:

E(l)
1,1 = 1

4�˙tbH

[∫ �/2

(�/2)−�

∫ b

0

∫ 0

− arctan(H/l0)

Ad�dsdϕ

+
∫ (�/2)−�

0

∫ c(cos(ϕ−˛)/ cos ϕ)

0

∫ 0

− arctan(H/l0)

Ad�dsdϕ

+
∫ (�/2)−�

0

∫ b

b−a(cos(ϕ+�)/ cos ϕ)

∫ 0

− arctan(H/l0)

Ad�dsdϕ

]
(15)

where the expression of l0 is s sin ˛/cos(ϕ − ˛) and the expres-
sion of the integral function A is cosl ϕ cosl+1 �(1 − e−˙tl0/ cos �)(H −
l0 tan �).

2.3.2. Transmission probability calculation
The transmission probability form a side surface to the other
side surface also contains many complex cases. Take an example,
the transmission probability of the side surface 2 to the side sur-
face1 consists of three parts, they are neutron flying from surface
2 quadrant 4 to surface 1 quadrant 1, neutron flying from surface 2
quadrant 4 to surface 1 quadrant 2, which part contains two differ-
ent cases, and neutron flying from surface 2 quadrant 3 to surface 1
quadrant 2. These four cases are shown in Fig. 4(a)–(d), respectively.

The limits of integral variables corresponding to above four cases
are as follows:

(1) � ∈[0, (�/2)−�], s′ ∈[0, a], h ∈[l0 tan �, H], � ∈[−arctan(H/l0), 0];
(2) ϕ ∈[˛−(�/2), 0], s′ ∈[0, a], h ∈[l0 tan �, H], � ∈[−arctan(H/l0), 0];
(3) ϕ ∈[−� , ˛−(�/2)], s′ ∈[0, bcos ϕ/cos (ϕ + �)], h ∈[l0 tan �, H],

� ∈[−arctan(H/l0), 0];
(4) ϕ ∈[−�/2, −�)], s′ ∈[0, bcos ϕ/cos (ϕ + �)], h ∈[l0 tan �, H],

� ∈[−arctan(H/l0), 0];

and RS = l0/cos �.
Substitute the above expressions into the integral variables and

limits in Eq. (14), the expression of transmission probability corre-
sponding to the four cases of neutron flying from the surface 2 to

Table 2
Region averaged group fluxes for rod-in case of problem 1

Method Core Axial blanket Control rod

Monte-Carlo 1G 4.3482E−05 5.2029E−06 1.6556E−05
2G 2.4171E−04 4.6772E−05 9.1050E−05
3G 1.6200E−04 4.6190E−05 5.1815E−05
4G 6.0438E−06 3.6287E−06 1.1073E−06

MARK/PN 1G −1.741a +5.7564 +111.6
2G −1.187 +11.63 +106.7
3G −0.040 +27.27 +102.7
4G +0.822 −0.1102 +90.68

TPMTDT 1G +3.402 −6.091 +15.71
2G +2.064 +1.780 +10.58
3G −2.765 −8.257 +12.37
4G −2.839 +1.530 +16.73

a Relative differences from Monte-Carlo (%).
EVENT (P5) +0.632 +0.3498 +0.3234 −10.16 −0.9852
TPMTDT +0.453 +0.3298 +0.2937 −4.590 −1.477

a Relative differences from Monte-Carlo (%).

Table 4
Region averaged group fluxes for case 3 of problem 2

Method Core Internal blanket Radial blanket Axial blanket

Monte-Carlo 1G 1.9033E−05 1.1875E−05 1.3718E−06 2.7276E−06
2G 1.1026E−04 1.0838E−04 1.4703E−05 2.8409E−05
3G 8.0177E−05 1.1672E−04 1.9121E−05 3.3614E−05
4G 3.1958E−06 7.0366E−06 1.6164E−06 3.5169E−06

EVENT (P5) 1G +2.196a +3.377 +3.076 +4.436
2G +2.295 +2.316 +2.374 +2.837
3G +2.388 +2.245 +2.348 +2.719
4G +2.200 +2.447 +1.590 +4.026

TPMTDT 1G +4.067 +4.391 −2.668 +2.896
2G +3.918 −2.316 +4.720 +2.460
3G +3.282 −5.541 −1.475 +1.276
4G +2.547 −2.116 +3.718 +2.198

a Relative differences from Monte-Carlo (%).

surface 1 is:

T (l′l)
21,41 = 1

�aH

∫ (�/2)−�

0

∫ a

0

∫ 0

− arctan(H/l0)

Bd�ds′dϕ (16)

T (l′l)
21,42 = 1

�aH

∫ 0

˛−(�/2)

∫ a

0

∫ 0

− arctan(H/l0)

Bd�ds′dϕ

+
∫ ˛−(�/2)

−�

∫ b cos ϕ/ cos(ϕ+�)

0

∫ 0

− arctan(H/l0)

Bd�ds′dϕ (17)
T (l′l)
21,32 = 1

�aH

∫ −�

−�/2

∫ b cos ϕ/ cos(ϕ+�)

0

∫ 0

− arctan(H/l0)

Bd�ds′dϕ (18)

where the expression of l0 is s sin ˛/cos(ϕ − ˛) and the expres-
sion of the integral function B is cosl−1 ϕ cosl′+1(ϕ + �) cosl+1 �(1 −
e−˙tl0/ cos �)(H − l0 tan �).

3. Numerical results

The code TPMTDT was developed based on the TPM method
described above. Three 3D Takeda benchmark problems, which are,
a small FBR core, an axially heterogeneous FBR core (which both are
in XYZ geometry), and a small FBR core with hexagonal-z geome-
try, and an unstructured geometry problem were calculated. The
reference value of the three 3D Takeda benchmark problems is the
average calculations of Monte-Carlo method and PN method con-
tributed to the benchmark, which was computed by the variance
weighted procedure (Takeda and Ikeda, 1991a, b). The reference
value of the unstructured geometry problem is the calculation
results of MG-MCNP3B code.
Table 5
Comparison of Keff and control rod worth for problem 3

Method Case 1 Case 2 Case 3 CR-worth

Monte-Carlo 1.0951 0.9833 0.8799 2.23E−01
MARK/PN −0.082a 0.010 0.2273 −1.345
TPMTDT +0.237 0.3356 0.1818 −3.139

a Relative differences from Monte-Carlo (%).
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Table 6
Region averaged group fluxes for case 3 of problem 3

Method Test zone Axial blanket Driver with moderator Control rod

Monte-Carlo 1G 1.4695E−04 3.7122E−05 7.0291E−05 4.4354E−05
2G 1.1251E−04 4.8758E−05 5.1347E−05 3.5773E−05

2.23
8.66

+8.16
+6.01
+5.52
+6.17

+8.21
+4.08
+5.89
+5.30
3G 2.6560E−05
4G 2.4518E−06

MARK/PN 1G −0.5172a

2G −0.4355
3G +0.6212
4G +6.077

TPMTDT 1G +4.797
2G +2.524
3G +3.618
4G +3.145

a Relative differences from Monte-Carlo (%).

Table 7
Cross sections of unstructured geometry problem

Group Region �˙f

1 (fast neutron) Fuel 6.203E−03
Water 0.0

2 (thermal neutron) Fuel 1.101E−01
Water 0.0

3.1. Small FBR core

This is a small core model of a FBR. There are two cases.
Case 1: the control rod is withdrawn (the control rod position
is filled with Na). Case 2: the control rod is half-inserted. The
axial mesh size is 4.0 cm. The Keff of the two cases as well as the
control rod worth are listed in Table 1. It can be found that the
eigenvalues of the TPMTDT agree well with those of the Monte-
Carlo method and PN method. Their differences are less than

0.5%. Table 2 shows the region averaged group fluxes for rod-
in case. It can be seen that TPMTDT also agrees well with the
Monte-Carlo. It is much better than MARK/PN in the control rod
region.

3.2. Axially heterogeneous FBR core

In this problem, the core has an internal blanket region. There
are three cases:

Case 1: the control rods are inserted.
Case 2: the control rods are withdrawn.
Case 3: the control rods are replaced with core or blanket cells.

The axial mesh size is chosen as 5.0 cm for case 1 and case 2, and
4.0 cm for case 3. The keff of three cases and the associated control
rod worth are listed in Table 3. As shown, the eigenvalues of the
TPMTDT agree well with those of the Monte-Carlo method with
the differences being less than 0.46%. The region averaged group
fluxes for case 3 are listed in Table 4. It can be seen the differences
in the region averaged group fluxes are less than 5.0% except for the
third group in the internal blanket.

Table 8
Results of unstructured geometry problem

Method The fluxes of fast neutron

Fuel Water

MG-MCNP3B 1.0a 1.198
TPMTD 1.0 1.158

a Normalization: the fast flux in fuel zone is 1.0.
53E−05 3.6997E−05 7.7894E−06
71E−06 1.3952E−05 4.8143E−07

5 −1.510 +3.341
8 −1.986 +1.409
1 −25.40 +60.94
9 +0.1218 +702.4

7 −2.195 +3.756
0 −3.110 +4.629
1 −11.69 +10.04
3 −1.927 +26.36

˙S.g→1 ˙S.g→2 ˙t

1.780E−01 1.002E−02 1.9665E−01
1.995E−01 2.188E−02 2.2206E−01

1.089E−03 5.255E−01 5.9616E−01
1.558E−03 8.783E−01 8.8787E−01

3.3. Small FBR core with hexagonal-z geometry

It is a hexagonal-z geometry problem with the vacuum boundary
conditions. There are three cases:

Case 1: the control rods are withdrawn.
Case 2: the control rods are half-inserted.
Case 3: the control rods are fully inserted.
The axial mesh size is chosen as 4.0 cm for case 1, and 3.75 cm for
case 2 and case 3. The keff of three cases and the associated control
rod worth are listed in Table 5. The eigenvalues of the TPMTDT agree
well with those of the Monte-Carlo method with the differences
being less than 0.4%. The region averaged group fluxes for case 3
are shown in Table 6. It can be found, the averaged flux of TPMTDT
agrees no so well with the Monte-Carlo method. However, it is the
same level compare with the PN method.

3.4. Unstructured geometry problem

Through the above results comparison, it is validated that the
TPMTD code agrees well with other codes or reference. But all the
above problems can use the cube mesh method or hexagon-z mesh
method to solve. In order to validate the adaptability of TPMTD to
calculate the three-dimensional unstructured geometry, a three-
dimensional problem with unstructured geometry was developed.
It contains a fuel rod surrounded by the light water as shown in
Fig. 5. The cross sections are given in Table 7. Table 8 shows the
results obtained by the MG-MCNP3B code and the TPMTD code.
It shows that the result of the TPMTD code agrees well with the
results of MG-MCNP3B code.

The fluxes of thermal neutron keff

Fuel Water

7.845 5.233 0.07511
8.164 5.503 0.07515
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4. Conclusion

A transmission probability method based on triangular-z mesh

for calculating three-dimensional neutron transport equation is
developed. The code TPMTDT is verified with three 3D Takeda
benchmark problems and the unstructured geometry problem. The
differences in keff between the TPMTDT and the reference are less
than 0.5% for all benchmarks. Sometimes the flux in the control rod
region is not so good. But it is better than that of the PN method. For
improving, the interior source should be approximated with higher
order polynomial. This work is under the way.
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