Annals of Nuclear Energy 79 (2015) 18-26

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene ==

Eigenvalue implicit sensitivity and uncertainty analysis with the
subgroup resonance-calculation method

@ CrossMark

Yong Liu?, Liangzhi Cao?, Hongchun Wu?, Tiejun Zu **, Wei Shen *"

2 Xi'an Jiaotong University, Xi’an, Shaanxi, China

b Canadian Nuclear Safety Commission, Ottawa, Ontario, Canada

ARTICLE INFO

Article history:

Received 18 June 2014

Received in revised form 7 January 2015
Accepted 9 January 2015

Available online 28 January 2015

Keywords:

Implicit sensitivity

Explicit sensitivity

Generalized Perturbation Theory
Subgroup resonance-calculation method

ABSTRACT

Response sensitivity coefficients with respect to nuclide cross sections consist of two parts, explicit sen-
sitivity coefficients and implicit sensitivity coefficients. The explicit sensitivity coefficients, which
account the direct impact of cross sections on the responses through neutron transport equation, can
be calculated efficiently with the classical Perturbation Theory. The implicit sensitivity coefficients, which
account the indirect impact of cross sections on the responses through resonance self-shielding, are
either omitted in most sensitivity analysis codes, or accounted for based on simple resonance-calculation
methods which are not applicable for complex fuel designs. In order to expand the implicit sensitivity
analysis method to wider application domain, a method based on the Generalized Perturbation Theory
(GPT) is proposed in this paper to calculate the implicit sensitivity coefficients by using the subgroup
method in the resonance self-shielding calculation. Based on the in-house-developed 2-D general-geom-
etry method-of-characteristic neutron-transport code AutoMOC and subgroup resonance self-shielding
code SUGAR, the proposed method has been implemented in the COLEUS code for the sensitivity and
uncertainty analysis. Numerical analysis is then performed to investigate the impact of the implicit sen-
sitivity coefficients of eigenvalue on non-resonance nuclide cross sections in two single-cell cases with
different enrichments. The eigenvalue sensitivity coefficients predicted by the COLEUS code are consis-
tent with those calculated by the direct-perturbation method, the reference solution. The results show
that the implicit sensitivity has an important impact on both sensitivity and uncertainty in some ana-

lyzed cases.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The results of reactor physics calculation are used for reactor
design, predicting the properties and behavior under various oper-
ating conditions. The accuracy of the results affects the margin of
design, limitation of controlling, and even the economy and safety
of the reactor. However, because of the hypotheses, approxima-
tions in the solution model and the inaccuracy of the input param-
eters, the results lie in a certain range, which mean that the results
are uncertain. Traditionally, conservative assumptions and large
safety margins are used in reactor safety analysis because the size
of uncertainty is not quantified. In this situation, the safety may be
guaranteed with the sacrifice of economy. For example, the uncer-
tainty of neutron fluence in the pressure vessel will affect the
choice of safety margins, and consequently affect the operating
conditions, the life of nuclear installations, and the cost (Kodeli,
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2001). However, if the size of the uncertainty can be determined,
the design and operation will be more valid. As a result, the econ-
omy can be realized on the premise of the assurance of safety.

Neutron-transport calculation is the first calculation step that
will introduce uncertainties. The uncertainties will be propagated
through this step to the subsequent calculation steps. Therefore,
neutron-transport calculation uncertainty analysis is one of the
basic uncertainty analysis in reactor calculation. It is generally
believed that the uncertainties of calculated responses in neu-
tron-transport calculation stem from three sources (Weisbin
et al,, 1976; Laletin and Kovalishin, 2002): (1) modeling error,
which is related to inaccuracy of mathematic-physical model, (2)
numerical error, which is related to inaccuracy numerical methods,
(3) input-parameter error including error in the nuclear data
library. Uncertainty introduced by the nuclear data is considered
as one of the most significant uncertainty in neutron-transport cal-
culation (Pusa, 2012). As a consequence, the research of response
sensitivity and uncertainty with respect to nuclide cross sections
obtains more and more attention.
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Sensitivity calculation is a necessary calculation step in deter-
ministic-method-based uncertainty analysis. Response (eigen-
value, reaction rate, etc.) sensitivity with respect to cross sections
can be divided into two parts, namely explicit sensitivity and
implicit sensitivity. The former is the direct impact of cross sec-
tions perturbation on the responses through neutron transport
equation, while the latter is the indirect impact of cross sections
perturbation on the responses through resonance self-shielding
procedure (Williams et al., 2001). As an indirect impact related
with resonance calculation, implicit sensitivity is often neglected
in many sensitivity and uncertainty analysis, and many sensitivity
and uncertainty analysis codes lack the ability to perform implicit
sensitivity calculation. However, from the original research of
Greenspan et al. (1978) to the subsequent research of Williams
et al. (2001), the results indicated that the implicit sensitivity
had a non-negligible importance relative to the explicit sensitivity
and the implicit effect had a magnitude that was more that 40% of
the explicit effect in some cases.

Therefore, it is necessary and important to take implicit sensi-
tivity into account when sensitivity and uncertainty analysis is
performed. Up to now, however, most implicit sensitivity studies
are mainly established for simple resonance-calculation methods
such as Bondarenko method (Williams et al., 2001), generalized
Stamm'’ler method (Dion and Marleau, 2013), and so on (Kimura
and Kitada, 2012), which are not applicable for complex fuel and
core designs. Moreover, the impact of the implicit sensitivity on
the uncertainty results was not publically reported before.
Recently, the subgroup resonance-calculation method (Hébert,
2007) and the method-of-characteristics (MOC) transport-calcula-
tion method (Askew, 1972) have been widely used for complex
geometry fuel and core designs and show high adaptability. In
order to extend the implicit sensitivity analysis method to a wider
application extent and investigate the impact of the implicit sensi-
tivity on the uncertainty results, the eigenvalue implicit sensitivity
and uncertainty analysis with the subgroup resonance-calculation
method are carried out in this paper. The sensitivity-calculation
methods are based on the classical Perturbation Theory (PT) for
the explicit sensitivity and the Generalized Perturbation Theory
(GPT) for the implicit sensitivity. And then the eigenvalue uncer-
tainty is determined based on the Sandwich rule (Alfassi, 2004)
and the covariance library is created based on ENDF/B-VIIL.1 using
NJOY (MacFarlane and Muir, 1994).

This paper is organized as follows: Theoretical models of this
work are described in Section 2. Section 3 describes the implemen-
tation of the calculation procedure based on the method presented
in Section 2. Section 4 gives the calculation results of two represen-
tative fuel-pin cells with different enrichments. Finally, Section 5
summarizes and concludes the work.

2. Theoretical models
2.1. Sensitivity coefficient

In this paper, the mathematical model is multigroup neutron
transport equation that can be written in operator form as:

(L—F)® =0 (1)

where L is multigroup form of the Boltzmann loss operator for neu-
trons; F is multigroup form of the Boltzmann production operator
for neutrons; 4 = 1/kef is the minimum eigenvalue for this equation;
® = d(r, £2, g) is multigroup neutron angular flux; and r is position,
Q is direction of travel, g is energy group; ke is effective multipli-
cation factor.

When a parameter perturbation is small enough, the change of
kegr can be expressed through the linear relationship:

Ak, ff Ao
© = Skws 2)

where o stands for a multigroup microscopic cross section of a par-
ticular nuclide; S , stands for the total sensitivity coefficient that
indicates the relative percent change of k. when o is perturbed
with a relative value of 1%.

If the perturbation of o just affects the corresponding multi-
group macro cross section, and then affects the eigenvalue through
transport calculation, the sensitivity coefficient can be considered
as explicit sensitivity coefficient. If the perturbation of o affects
the self-shielding cross sections and then affects the multigroup
macro cross section, and then affects the eigenvalue through trans-
port calculation, the sensitivity coefficient can be considered as
implicit sensitivity coefficient. So the total sensitivity coefficient
of eigenvalue can be expressed as:
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Ser, is explicit sensitivity coefficient and S;:’;fpg is implicit sensitivity
coefficient. 6¥), is the gth group effective self-shielding cross section
of reaction type x for nuclide j.

2.1.1. Explicit sensitivity

If o is explicitly included in the multigroup Boltzmann transport
operator, the explicit sensitivity coefficient of k.g with respect to o
is defined as:

exp o akeff

= (4)
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The explicit sensitivity coefficient can be efficiently calculated
utilizing classical Perturbation Theory and it equals to Weisbin
et al. (1976):
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where (, ) indicates integration over space, direction, energy group.
®* is adjoint flux, which is the solution of the corresponding adjoint
multigroup transport equation:

(L' — JF)® =0 (6)

where L* and F* is the adjoint operators of L and F, respectively.
From Eq. (5), it can be found that the explicit sensitivity coeffi-
cients of kegr with respect to all parameters directly appearing in
the transport operator can be efficiently obtained with only once
forward calculation and once adjoint calculation. In this paper, a
subgroup method based code SUGAR (Cao et al., 2011 and He
et al., 2014) is applied to the resonance calculation, and a transport
code AutoMOC (Chen et al., 2010) based on two-dimensional arbi-
trary-geometry method-of-characteristics is applied to solve the
forward and adjoint neutron transport equation calculation.

2.1.2. Implicit sensitivity

To simplify notation, let « stand for the multigroup cross section
of a non-resonance nuclide, and af}xg stand for the self-shielding
multigroup cross section of isotope j in region r for reaction type
x and energy group g, and ¢,(E) stand for neutron scalar flux in
region r. The symbols j and r are omitted in the following equations
for simplicity. Generally, oxg is given by:

 J, ou(E)p(EYE

Oxg = W (7)
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In general, the weight function ¢(E) used to average the energy-
dependent cross section g,(E) is not known, and it depends on dif-
ferent geometrical configurations and material compositions. Gen-
erally, the weight function ¢(E) is obtained form of an auxiliary
equation (e.g. neutron slowing-down equation) if the nuclide cross
section has a resonant behavior in an energy group. If the perturba-
tion of o affects the weight function ¢(E) in the solution procedure
of the auxiliary equation, then it will affect the resonance self-
shielding multigroup cross section oy and consequently affect
the eigenvalue. To determine this implicit effect of non-resonance
nuclide cross sections on the system eigenvalue, which is the main
purpose of this paper, the resonance-cross-section sensitivity coef-
ficient of o, with respect to a non-resonance cross section o needs
to be calculated firstly. Differentiate Eq. (7) with respect to o and
rearrange terms to obtain the resonance cross section sensitivity
coefficients Sg,, .

o 00y
S = o
{fg 225 ¢ (E)d +fgax(E) S dE [, 3§;<f>d5}
Jo o(E)$(E)AE ~ [, ox(E)p(E)IE [, $(E)dE
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The first term on the right hand of Eq. (8) is considered as direct
effect and the second term is indirect effect. If o is not a fundamen-
tal physics parameter, such as resonances width, the first term is
always zero. Since this paper focuses on the non-resonant nuclides,
the first term vanishes. So d¢(E)/dx in the second term is the
unknown quantity that needs to be calculated. If d¢(E)/d« is solved
directly, it will need a different solution for different type of o. It is
not easy to modify a transport solver to calculate the derivatives.
Besides, when the number of the response o is big, this method
is time consuming. An alternative to the directly calculating d¢(E)/
oo can be formulated by utilizing GPT. The derivation is described
as follows.

Suppose ¢(E) is determined by an auxiliary equation:

Lo(E) = Q(E) 9)
Differentiate both side of Eq. (9) with respect to o:
LO0(E) _9Q(E) oL 10)

oa oo oo

Introduce a generalized adjoint function I7,(E) for reaction
type x and energy group g, and multiply both sides of Eq. (10) by
I';;(E), and then integrate over energy:

/g I (E) (L%;E)) dE = /g I (E) (8%{(5) - % (E)) dE (11)

The property of adjoint can give the following relationship:

/gl";g(E) (L%;E))dEz /gL*l";g(E (‘W )>dE (12)

where L* is the adjoint operator of L.

Through the comparison of the right side of Eq. (12) and the sec-
ond term of the right side of Eq. (8), it can be found that their struc-
ture are similar. So it is natural to define the generalized adjoint
equation as:

ox(E) 1

LB = 15 B o (BdE ~ T, o(EdE

(13)

After establishing such a generalized adjoint equation for a spe-
cific resonance cross section and substituting the generalized
adjoint function into the right side of Eq. (11), and utilizing the
equivalence relation of Eq. (11) and Eq. (12), it can be obtained

ultimately:
_ 0x(E) 1 9¢(E)
St = 0 /(f o (E)$(E)dE |, ¢>(E)dE> on %
/ (8cx Zz ())dE (14)

Now the GPT equation to calculate S;,,, with regular reso-
nance-calculation method has been derived. Once I’y ,(E) is derived
via solving Eq. (13), it is straightforward to calculated S;,, ., by
using Eq. (14). The aforementioned general derivation can be
extended to the subgroup resonance-calculation method as illus-
trated below.

Resonance cross section is divided into several bands (sub-
groups) from its minimum value to its maximum value in the sub-
group resonance-calculation method. The definition of subgroup
cross section is expressed as:

Jag, Oxs(E)$(E)E

xig = fAEi ¢ E dE

where subscript g and i stands for energy group and subgroup
respectively, and the range of AE; is AE; € {E|0y; < Oxg(E) < Oxiv1}-
The definition of the subgroup probability for subgroup i is:

s
pi_AEg

(15)

(16)

where AE; the energy width of subgroup i and AE, is the energy
width of group g.

Because the corresponding each range of every band is con-
tained in the energy range of energy group g, the average micro
cross section of energy group g can be expressed as follows:

P fAEg 0x( )4’( )dE _ Z; 1 Jag, Ox(E ( )dE
" fAEg Zizl fAEi
_ SN 1 Oxig fn by idQ (17)
St Jo b2

where ¢g; is called subgroup angular flux and is used as weight
function. ¢,; is the solution of subgroup transport equation in this

x 10

Relative Covariance

20

Energy Group 0

80

Fig. 1. The relative covariance matrix of Zr-90 total micro cross section.
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paper. The subgroup transport equation can be expressed as
follows:

Q- Vg1, Q) + Zigi(1)g;(r, Q) = Qgi(r, Q) (18)

where X,;(r) is subgroup total macro cross section. Qg;(r,Q) is
source term.

Eq. (18) is spatially-dependent because ¢,; is the solution of a
transport equation, which is solved by the method-of-
characteristics.

After making a comparison between Eqgs. (7) and (17), it can be
found several differences. For general resonance-calculation
method, the multigroup resonance cross section is obtained
through integrating over energy, while for the subgroup reso-
nance-calculation method the multigroup resonance cross section
is obtained through adding over bands. Moreover, the weight func-
tion of Eq. (7) is the solution of a spatially-independent slowing-
down equation while the weight function of Eq. (17) is the solution
of a spatially-dependent subgroup transport equation. Hence it is
easy to generalize the result of Eq. (14) to subgroup resonance-cal-
culation method:

0Qg;
S%,a:aZ// xg,( aQ; ,%d)g,)dgdv (19)

Eq. (13) can be transferred into the following form, from which

Iy, is calculated. In the following discussions, this equation is

named as subgroup generalized adjoint transport equation:

B Oxg,i 1
LT xgi = N TN
Yot Jv Jo OxgithgidQAV 370 [, [ ¢gidQdV

where L; is the subgroup adjoint transport operator for each band.

The source term Qg; in SUGAR is composed of scattering
sources from fast energy group and scattering sources from
upstream resonance energy group. The fission sources and scatter-
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Fig. 2. Calculation flow chart of sensitivity and uncertainty analysis.

ing sources among subgroups are neglected in consideration of
their slight importance. The source term can be divided into two
parts:

Qfast.g,i = p1 / ng’ﬂg({bg T Q) (21)
g/EGfusr

Qresgl Di ZESgHgIZ/ ¢g’.i(rv Q)dQ (22>
g'<g

The derivative of source term with respect to « can also be
solved with GPT because the source term is the linear function of
flux. Since the derivation is similar to the derivation of the sensitiv-
ity coefficient of resonance cross section with respect to o, the for-
mula is presented as follows without derivation process for
simplicity:

8Qg,i o az:sg’ﬂgl
on T4 {,1// 0y 42V

z/ IR

oo
where W is the corresponding generalized adjoint flux and V is the
region volume.

After obtaining the resonance-cross-section sensitivity coeffi-
cient S,,, ., and taking into account the isotope j and region r, the
implicit sensitivity coefficients of non-resonance nuclide cross sec-
tions can be expressed as:

oL
_ %d@) deV] % (23)

|mp

’<eﬂf°€ ZS -0V O’U gt (24)
Jjrx.g

where Sk o) is the explicit sensitivity coefficient of eigenvalue

with respect “fo the resonance cross section of a resonance nuclide
j in region r for reaction type x and energy group g, which can be
calculated by using Eq. (5).

2.2. Uncertainty

In deterministic methods for sensitivity and uncertainty analy-
sis, uncertainty can be obtained through the Sandwich rule after
sensitivity coefficients are obtained. The uncertainty of keg can be
expressed as:

Yet) _ g €, 5" (25)
Kett ' !

where V(kes) is the variance of Ker. S}c‘_’; is the total sensitivity coef-

ficients of keg with respect to an input parameter o;. Cy,, is the

covariance matrices between input parameter o; and o;. The covari-

ance matrices describe the uncertainty related to the cross sections.

3. Implementation

In order to utilize Eq. (25) to determine the uncertainty of Keg,
the energy-group structure of covariance matrices should be same
as the sensitivity profiles. The EPRI-CPM 69-group structure
(MacFarlane and Muir, 1994) is used in this paper, so a correspond-
ing covariance library is created using NJOY99 based on ENDF/B-
VIIL.1. Fig. 1 shows the 69-group total micro cross section relative
covariance matrix of Zr-90. With the covariance data, the uncer-
tainty of keg can be determined by Eq. (25).

AutoMOC is applied as a subgroup transport-equation solver in
the resonance calculation of SUGAR, and the problem geometry
will be subdivided into many meshes with the flat-source approx-
imation. Hence for each mesh that contains resonance nuclides or
sources, a generalized subgroup adjoint equation is needed for
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each resonance nuclide and each source respectively. Besides, in
consideration of resonance interference effects, SUGAR will per-
form resonance interference iterations. These situations will lead
to complexities and large computation demands. Therefore, some
simplifications and assumptions are made as follows in this paper:

(1) Because the perturbation of fast-energy-group cross section
just affects the fast scattering sources and this effect is indi-
rect, neglecting the effects of fast-energy-group cross section
may have negligible impact on the results and is helpful to
reduce the computing time. The validity of this approxima-
tion can be confirmed through numerical results.

(2) In order to take the resonance interference effect into
account, resonance interference iteration is performed twice
or more. Resonance cross section sensitivity coefficients will
be calculated in each iteration if the influences of iteration
are taken into account strictly. However, the nuclide cross
section influences transferred from the previous iteration
to the next iteration are indirect, which are considered neg-
ligibly small. So the resonance cross section sensitivity coef-
ficients are calculated in the final iteration. The validity of
this simplification can be confirmed through numerical
results.

(3) The meshes of the geometry are user-defined in AutoMOC. If
two meshes are equivalent to each other (it implies that the
meshes are exactly equivalent, including material, geometri-
cal shape, location and boundary condition, etc.), it can be
regarded as that the resonance cross sections or the source
terms in the two meshes have equal sensitivity coefficients
with respect to a nuclide cross section over the whole prob-
lem region. Hence the sensitivity coefficients only need to be
calculated once for equivalent meshes in order to reduce
computation time.

Based on the above derivations and analyses, the calculation of
eigenvalue implicit and explicit sensitivity coefficients and uncer-

tainties can be summarized in the following steps, as illustrated in
Fig. 2.

As stated above, the solution is performed in the last resonance
interference iteration of the subgroup resonance calculation, and
the equivalent meshes just need to be solved once.

Firstly, the derivative of the resonance energy group scattering
source needs to be solved. The basic numerical method is the same
as the method utilized to calculated resonance cross section sensi-
tivity coefficients. A corresponding generalized adjoint equation
needs to be established and solved for a specific source. And the
derivative can be calculated with Eq. (23).

Secondly, a subgroup generalized adjoint equation should be
established according to Eq. (20) for a certain resonance energy
group g and a certain resonance reaction type x of a certain reso-
nance nuclide j in region r.

Thirdly, the subgroup generalized adjoint equation is solved by a
transport solver which can perform adjoint calculation. The trans-
port solver AutoMOC in this paper is based on method-of-character-
istics. When MOC method is applied, it is worth noting that the
subgroup generalized adjoint equation is a fixed sources problem,
and the source is just located in a small mesh, so it is necessary to
choose a relatively high order quadrature set to prevent the ray
effect. Besides, because of the particularity of the generalized adjoint
source on the right side of Eq. (20), the source term may be negative
in some situations. Therefore, the transport solver should exclude
the assumption of the nonnegative flux or the sources.

The above three steps are repeated for all scattering sources and
resonance cross sections of all resonance nuclides.

Fourthly, after quantifying the resonance self-shielding cross
section sensitivity coefficients, a forward and an adjoint neutron-
transport calculation are performed. And then explicit sensitivity
coefficients are calculated based on classical Perturbation Theory
described by Eq. (5).

Fifthly, implicit sensitivity coefficients of non-resonant nuclides
can be quantified with Eq. (24). And finally, uncertainty can be
computed using the Sandwich rule.

Table 1
Comparison of implicit sensitivity coefficients of kegr with respect to group-wide total micro cross sections of non-resonance nuclides for case NECP-RB3.1.
GRP H-1 0-16 in the fuel 0-16 in the moderator Zr-nat
PT DP PT DP PT DP PT DP
1 - 6.24E-10 - 1.16E-10 - 1.65E-10 - 1.53E-10
2 - 1.10E-09 - 5.80E-11 - 1.42E-10 - 3.47E-10
3 - 3.48E-09 - 6.91E-11 - 2.62E-11 - 9.45E-10
4 - 5.92E-09 - 4.47E-10 - 3.52E-10 - 6.90E—-10
5 - 4.89E-09 - 7.81E-10 - 6.06E—10 - 5.42E-10
6 - 4.84E-09 - 5.74E-10 - 3.17E-10 - 2.11E-10
7 - 2.94E-09 - 1.08E-09 - 2.20E-10 - 2.01E-10
8 - 5.38E—-09 - 1.13E-09 - 2.72E-10 - 4.26E-10
9 - 5.01E-09 - 1.58E-09 - 2.37E-10 - 5.42E-10
10 - 4.58E-09 - 1.09E-09 - —4.86E-10 - 7.46E—-10
11 - 2.80E-08 - 4.48E-09 - 1.01E-09 - 2.67E-09
12 - 5.99E-09 - 2.68E-09 - —9.23E-10 - 7.57E-10
13 - 5.28E-08 - —2.91E-08 - —1.72E-08 - —1.09E-09
14 - 9.62E-07 - —9.08E-07 - 1.54E-08 - 3.36E-08
15 —7.26E-05 —7.50E-05 —2.83E-05 —2.82E-05 —7.23E-06 —7.46E-06 —7.40E-06 —7.35E-06
16 —9.46E-05 —9.75E-05 —3.92E-05 -3.91E-05 —9.33E-06 —9.62E-06 —8.63E-06 —8.58E-06
17 —1.90E-04 —1.95E-04 —7.87E-05 —7.84E-05 —1.84E-05 —1.89E-05 —1.84E-05 —1.83E-05
18 —2.65E-04 —2.72E-04 —1.13E-04 -1.13E-04 —2.56E-05 —2.62E-05 —1.83E-05 —1.82E-05
19 —3.90E-04 —3.99E-04 —1.67E-04 —1.67E-04 —3.73E-05 —3.82E-05 —2.23E-05 —2.22E-05
20 —1.04E-03 —1.07E-03 —4.63E-04 —4.63E-04 —9.99E-05 —1.02E-04 —6.65E-05 —6.61E-05
21 —1.86E-03 —1.89E-03 —8.56E-04 —8.55E-04 —1.77E-04 —1.80E-04 —1.34E-04 —1.33E-04
22 —1.85E-03 —1.88E-03 —8.47E-04 —8.47E-04 —1.75E-04 —1.77E-04 —1.15E-04 —1.15E-04
23 —8.03E-04 —8.13E-04 —4.58E-04 —4.59E-04 —7.80E-05 -7.91E-05 —5.25E-05 —5.22E-05
24 —2.02E-03 —2.06E-03 —1.03E-03 —1.03E-03 ~1.91E-04 —1.93E-04 —1.30E-04 —1.29E-04
25 —2.90E-03 —2.94E-03 —1.33E-03 —1.34E-03 —2.69E-04 —2.74E-04 —1.83E-04 —1.82E-04
26 —8.05E-05 —8.59E-05 —1.90E-04 —1.90E-04 —1.41E-05 —1.47E-05 —1.08E-05 —1.08E-05
27 —5.51E-03 —5.60E-03 —2.61E-03 —2.63E-03 —5.08E-04 —5.17E-04 —3.51E-04 —3.50E-04
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Table 2

Integral sensitivity coefficients of ke with respect to total micro cross sections for case NECP-RB3.1.

Nuclides Method Explicit Implicit Total Explicit + implicit
H-1 DP 1.1115E-01 ~1.7378E-02 9.4356E—02 9.3767E-02
PT 1.1088E-01 ~1.7078E-02 - 9.3805E—02
0-16 in the fuel DP —1.0084E—03 —8.3058E-03 ~9.3235E-03 ~9.3142E-03
PT —1.0084E-03 —8.2130E-03 - ~9.2213E-03
0-16 in the moderator DP —6.1668E—04 ~1.6376E-03 ~2.1418E-03 —2.2542E-03
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Fig. 3. The comparison between explicit sensitivity and implicit sensitivity for case NECP-RB3.1.

4. Numerical results

The sensitivity coefficients can be calculated with Direct Pertur-
bation (DP) method, which is precise when the perturbation is
small and the linear relation is strong. So the results given by the
DP method are usually treated as reference results. This method
can be described as Eq. (26):

"
o dkefr _ Yo Ketr — Kegt
keir do kgff ot — o

kegr .t =

(26)

where o, «* and o~ are the unperturbed, positive perturbed and
negative perturbed value of a cross section respectively, and
Ko k% and k; is the corresponding kegr. To obtain different types

of reference sensitivity coefficients for comparison, the DP method
was implemented as follows (Dion and Marleau, 2013):

(1) To obtain the total sensitivity coefficients, a full calculation
(e.g., both resonance calculation and transport calculation)
with reference cross sections and two full calculations with
positive and negative perturbed cross sections (applied
before resonance calculations) are performed respectively.

(2) To obtain the explicit sensitivity coefficients, a full calcula-
tion with reference cross sections and two full calculations
with positive and negative perturbed cross sections (applied
after resonance calculations) after resonance calculation are
performed respectively.

(3) To obtain the implicit sensitivity coefficients, a full calcula-
tion with reference cross sections is performed first, and
two resonance calculations with positive and negative per-
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Table 3
Comparison of implicit sensitivity coefficients of keg with respect to group-wide total micro cross sections of non-resonance nuclides for case NECP-RB3.2.
GRP H-1 0-16 in the fuel 0-16 in the moderator Zr-nat
PT DP PT DP PT DP PT DP
1 - 1.21E-11 - 4.90E-12 - —-3.91E-13 - 1.21E-11
2 - 7.21E-11 - 3.45E-12 - 5.96E-12 - 5.08E-11
3 - 3.84E-10 - —1.39E-11 - —7.74E-12 - 1.13E-10
4 - 9.43E-10 - 2.45E-12 - 1.33E-11 - 9.42E-11
5 - 1.51E-09 - 1.54E-10 - 1.27E-10 - 8.26E-11
6 - 1.75E-09 - 1.76E-10 - 1.00E-10 - 3.14E-11
7 - 5.09E-10 - 2.38E-10 - 4.92E-11 - 391E-11
8 - 7.58E-10 - 2.74E-10 - 2.39E-11 - 7.08E-11
9 - 8.02E-10 - 3.71E-10 - 2.04E-11 - 7.24E-11
10 - 5.86E-10 - 5.32E-10 - —3.90E-13 - 1.03E-10
11 - 3.15E-10 - 7.70E-10 - —-1.62E-11 - 3.33E-10
12 - 2.05E-10 - 1.07E-09 - —3.40E-11 - 1.19E-10
13 - -7.01E-10 - 1.06E-09 - —-3.23E-10 - 1.39E-10
14 - 7.92E-09 - —8.72E-09 - -7.01E-11 - 7.26E-10
15 —9.43E-07 —1.07E-06 —3.84E-07 —3.82E-07 —-1.01E-07 —1.05E-07 —1.05E-07 —1.04E-07
16 —1.65E-06 -1.81E-06 —5.94E-07 —5.88E-07 —1.71E-07 -1.77E-07 —1.57E-07 —1.55E-07
17 2.06E-06 1.99E-06 4.18E-07 4.21E-07 1.69E-07 1.75E-07 1.78E-07 1.80E-07
18 —1.30E-05 —-1.35E-05 —5.17E-06 —5.15E-06 —1.27E-06 —-1.31E-06 —9.08E-07 —9.06E-07
19 —2.74E-05 —2.84E-05 —1.05E-05 —1.05E-05 —2.66E-06 —2.74E-06 —1.58E-06 —1.58E-06
20 —5.46E-05 —5.68E-05 —2.63E-05 —2.65E-05 —5.54E-06 —5.74E-06 —3.67E-06 —3.69E-06
21 —2.99E-04 —3.08E-04 —1.35E-04 —-1.37E-04 —2.85E-05 —2.93E-05 —2.18E-05 —2.19E-05
22 —3.60E-04 —3.70E-04 —1.62E-04 —1.64E-04 —3.40E-05 —3.50E-05 —2.27E-05 —2.29E-05
23 —9.34E-05 —1.00E-04 —6.61E-05 —6.91E-05 —9.54E-06 —1.02E-05 —6.55E-06 —6.88E-06
24 —3.74E-04 —3.92E-04 —2.15E-04 —2.23E-04 —3.58E-05 —3.75E-05 —2.52E-05 —2.58E-05
25 —4.49E-04 —4.73E-04 —2.65E-04 —2.74E-04 —4.23E-05 —4.45E-05 —3.05E-05 —3.13E-05
26 —4.64E-04 —4.69E-04 —2.59E-04 —2.60E-04 —4.36E-05 —4.41E-05 —3.12E-05 —3.09E-05
27 —9.35E-04 —9.82E-04 —4.77E-04 —4.96E-04 —8.66E-05 —9.09E-05 —6.12E-05 —6.29E-05
Table 4
Integral sensitivity coefficients of kg with respect to total micro cross sections for case NECP-RB3.2.
Nuclides Method Explicit Implicit Total Explicit + implicit
H-1 DP 1.1817E-02 —3.1957E-03 8.6263E-03 8.6210E-03
PT 1.2388E-02 —3.1627E-03 - 9.2256E-03
0-16 in the fuel DP —2.9605E-03 —1.6651E-03 —4.6255E-03 —4.6255E-03
PT —2.8649E-03 —1.6222E-03 - —4.4871E-03
0-16 in the moderator DP ~2.9299E-03 ~3.0160E-04 ~3.2315E-03 ~3.2315E-03
PT —3.0236E-03 —2.8991E-04 - —3.3136E-03
Zr-nat DP —4.2860E-03 —2.0894E-04 —4.4949E-03 —4.4949E-03
PT —4.2919E-03 —2.0720E-04 - —4.4991E-03

turbed cross sections are performed next, and then the
transport calculations are performed by replacing the
perturbed cross sections with the reference values after

resonance calculation.

Two resonance benchmark NECP-RB3.1 and NECP-RB3.2 (Wu

et al.,, 2012) were analyzed in this paper. The two benchmark cases
are pin cell problems with different U-235 enrichment: 5% for
NECP-RB3.1 and 90% for NECP-RB3.2. The clad and moderator for
both cases are Zr-nat and light water respectively. It is noteworthy
that Zr-nat is not treated as a resonance nuclide in this paper.
Because there is no Zr-nat in ENDF/B-VII.1, the covariance of Zr-
90 is used instead. Such a treatment is not expected to affect the
discussion and conclusion on the results.

Sensitivity coefficients and uncertainty with respect to the total
micro cross sections are calculated and analyzed to validate the
proposed method in this paper, and to investigate the total effect
of the non-resonance nuclides. It is necessary to note that to ensure
the perturbation reasonable and physical, the perturbation of the
total micro cross sections is implemented by perturbing absorption
cross sections and scattering cross section simultaneously with the
same relative perturbation amount as that of the total micro cross
sections in this paper.

4.1. Sensitivity results

4.1.1. NECP-RB3.1

The implicit sensitivity coefficients of kg with respect to total
micro cross sections calculated with both the PT-based method and
the DP method are presented in Table 1. DP method was performed
based on +5% changes in the multigroup total micro cross sections
of non-resonance nuclides. It can be found the results of the PT-based
method agree well with the DP method in resonance energy groups.
The implicit sensitivity coefficients at fast energy group are calculated
with the DP method and the results show that the absolute value is
very small, which proves that the neglecting of the fast energy group
implicit sensitivity coefficients is a reasonable approximation.
Because the DP method takes into account the iteration-influence
effect, the good agreement between the PT-based method and the
DP method in resonance energy groups proves that the neglecting
of the iteration influences is a reasonable approximation as well.

Table 2 gives the integral total, explicit and implicit sensitivity
coefficients of kegr with respect to total micro cross sections of
non-resonance nuclides. The results of the PT based method are
also consistent with the DP method.

In order to analyze the relative importance of implicit sensitiv-
ity, which is one of the main purpose of this paper, Fig. 3 gives a
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Fig. 4. The comparison between explicit sensitivity and implicit sensitivity for case NECP-RB3.2.

series of histograms comparing the implicit sensitivity coefficients
with the explicit sensitivity coefficients with respect to total micro
cross sections of non-resonance nuclides.

It can be found from Fig. 3 that the explicit sensitivity coeffi-
cients of most energy group are positive, while the implicit sensi-
tivity coefficients are negative. If the absolute value of the explicit
sensitivity coefficients is larger than the implicit sensitivity coeffi-
cients (e.g. H-1 in this problem), the sensitivity coefficients will be
overestimated if the implicit sensitivity coefficients are neglected.
On the contrary (e.g. O-16 in the fuel, Zr-nat in this problem), the
sensitivity coefficient signs will be contrary to the actual value if
the implicit sensitivity coefficients are neglected. It is noteworthy
that although the relative importance of H-1 implicit sensitivity
is smaller than other nuclides, the absolute values of H-1 implicit
sensitivity coefficients are the biggest one, because H-1 is the dom-
inating moderated nuclide in such case.

4.1.2. NECP-RB3.2

The implicit and integral sensitivity coefficients of kg with
respect to total micro cross sections calculated with the two meth-
ods are presented in Tables 3 and 4, respectively. The DP method
was performed based on 5% changes in the multigroup total micro
cross sections of non-resonance nuclides. It can also be concluded
that the results of the PT-based method agree well with the DP
method. Neglecting of the fast energy group implicit sensitivity
coefficients and the iteration influences are reasonable as well.

Fig. 4 gives a series of histograms to compare the implicit sen-
sitivity with the explicit sensitivity of total micro cross sections of
non-resonant nuclides for case NECP-RB3.2. The conclusions are
almost the same as the conclusions of case NECP-RB3.1 except
Zr-nat. In fact, it can be found that the implicit sensitivity coeffi-
cients of all the nuclides decrease when compared with that of
NECP-RB3.1. Because in the low enrichment case NECP-RB3.1, the

Table 5
The uncertainty contributions of total micro cross sections.
Case Nuclide Uncertainty contribution Ratio
With implicit sensitivity Without implicit sensitivity
NECP-RB3.1 H-1 2.0635E-02 2.1986E—-02 0.9386
0-16 in the fuel 1.4757E-02 2.7083E-03 5.4488
0-16 in the moderator 2.2780E-03 3.7203E-03 0.6123
Zr-nat 3.7064E—02 3.1179E-02 1.1887
NECP-RB3.2 H-1 2.2835E-02 2.2908E—-02 0.9968
0-16 in the fuel 5.4193E-03 2.8623E-03 1.8933
0-16 in the moderator 3.3408E-03 2.9579E-03 1.1294
Zr-nat 1.4827E-02 1.4768E-02 1.0040
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perturbation of the total micro cross sections affects the absorb
cross sections of U-238 mainly. While in the high enrichment case
NECP-RB3.2, the perturbation of the total micro cross section
mainly affects absorb and fission cross sections of U-235 in the
same direction, so the effects on eigenvalue cancel each other
out. Therefore, the implicit sensitivity in high enrichment case is
smaller than that in the low enrichment case. However, the impli-
cit sensitivity of O-16 is also very import when compared with its
explicit sensitivity.

4.2. Uncertainty results

The influences on uncertainty when the implicit sensitivity is
neglected are presented in Table 5. It can be found that the uncer-
tainty contributions of H-1 in both cases are not severely influ-
enced by implicit sensitivity because the implicit sensitivity
coefficients are relatively small relative to the explicit sensitivity
coefficients. When implicit sensitivity is neglected, the uncertainty
contribution of O-16 in the fuel is seriously underestimated in both
cases, while the uncertainty contribution of O-16 in the moderator
is slightly overvalued in NECP-RB3.1 and slightly underestimated
in NECP-RB3.2. It is interesting to find that although the implicit
sensitivity coefficients of Zr-nat are very important among the res-
onance energy groups in NECP-RB3.1, the uncertainty contribution
is not seriously changed by the neglecting of implicit sensitivity.
The main reasons include the multiplicative relationships in the
“Sandwich rule” and the covariance magnitude in resonance
energy groups.

5. Summary and conclusions

Eigenvalue sensitivity is composed of explicit sensitivity and
implicit sensitivity. The former can be calculated efficiently based
on classical Perturbation Theory. The latter is an indirect and is
not calculated and analyzed widely in sensitivity and uncertainty
analysis.

Implicit sensitivity is investigated based on the perturbation-
theory-based method presented in this paper with subgroup reso-
nance-calculation method being used in resonance calculation. The
numerical results of this method are consistent with the results
given by the DP method, which is treated as a reference method.
The results of the typical pin cell examples indicate that: (1) the
fast energy group cross sections implicit sensitivity coefficients
are small, and it is reasonable to neglect these calculations; (2)
the sensitivity coefficients may be overestimated or obtained with
inverse sign if implicit sensitivity is neglected in some cases; (3)
when the sensitivity coefficients are used in uncertainty calcula-
tion, because of the complex multiplicative relationships between
each sensitivity coefficient in Sandwich rule, it will give unpredict-
able uncertainty results when implicit sensitivity is neglected.
Therefore, it is necessary to perform implicit sensitivity analysis
in sensitivity and uncertainty analysis to obtain more rigorous
results.

However, because of the properties of subgroup resonance-cal-
culation method, a generalized subgroup adjoint transport equa-
tion is necessary for every resonance nuclide mesh and every
scatter source mesh. This situation will lead to large computa-
tional quantity although some simplifications and assumptions
are made in this paper. For the situation where there are many
responses, some advanced methods (Abdel-Khalik et al., 2008;
Kennedy et al., 2012) are recommended.
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