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The method of characteristic direction probabilities (CDP) combines the benefits of the collision probabil-
ity method (CPM) and the method of characteristics (MOC) for the solution of the integral form of the
Botlzmann Transport Equation. By coupling only the fine regions traversed by the characteristic rays in
a particular direction, the computational effort required to calculate the probability matrices and to solve
the matrix system is considerably reduced compared to the CPM. Furthermore, boundary averaging is
performed to reduce the storage and computation but the capability of dealing with complicated geom-
etries is preserved since the same ray tracing information is used as in MOC. An analysis model for the
outgoing angular flux is used to analyze a variety of outgoing angular flux averaging methods for the
boundary and to justify the choice of optimize averaging strategy. The boundary average CDP method
was then implemented in the Michigan PArallel Characteristic based Transport (MPACT) code to perform
2-D and 3-D transport calculations. The numerical results are given for different cases to show the effect
of averaging on the outgoing angular flux, region scalar flux and the eigenvalue. Comparison of the results
with the case with no averaging demonstrates that an angular dependent averaging strategy is possible
for the CDP to improve its computational performance without compromising the achievable accuracy.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Recently there has been considerable research into the develop-
ment of direct, whole-core heterogeneous transport calculations
which can provide pin resolved power distributions and improve
the accuracy of LWR reactor physics simulations. There has
been considerable progress that suggests whole-core transport
calculations may become more widely used for practical LWR
applications. The method of characteristics (MOC) has been used
extensively in codes such as CASMO (Smith and Rhodes, 2000) to
perform lattice calculations for LWR applications. Similar to the
SN methods, the MOC uses a set of discrete ordinates, but MOC is
better suited to treat complicated geometries because it only
requires an approximation on the spatial variation of the source
and not on the flux itself along the tracing direction. However,
the accurate discretization of the problem geometry can require
a considerable number of characteristic rays, especially for the
three dimensional spatial meshing required to represent very thin
regions using burnable absorbers such as IFBA that coat the fuel
pin. In such cases, the memory requirements for MOC can become
prohibitive and limit the applicability of the method for practical
problems. To overcome this problem modular ray tracing tech-
niques have been developed in 2-D (Cho, 2005) and 3-D (Liu
et al., 2011). In modular ray tracing, the ray data is only deter-
mined for a few geometrically unique sub-domains in the problem.
This has been successfully implemented in several MOC codes (e.g.,
DeCART, MPACT, and CRX (Hong and Cho, 1998)). However the
transport sweep still needs to be performed along all the character-
istics lines for every direction, and this sweeping time can be
computationally expensive.

The method of characteristic direction probabilities was first
proposed for 2D problems by (Hong and Cho, 1999) and combined
the desirable features of the MOC and the collision probability
(CPM) (Sanchez, 1977). CPM has been widely used in lattice phys-
ics codes because it has the capability of treating the complicated
geometries and is very efficient when dealing with small size
problems. But this method has the drawback that the storage
requirements and computing time depend on the square of
the number of fine spatial regions in the problem. This is because
the collision probability matrix couples all the fine mesh regions.
Another drawback of CPM is that it cannot easily treat anisotropic

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2014.11.016&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2014.11.016
mailto:liuzhouyu1985@hotmail.com
mailto:bscollin@umich.edu
mailto:bkochuna@umich.edu
mailto:downar@umich.edu
mailto:yunlin@umich.edu
mailto:hongchun@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.anucene.2014.11.016
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


Fig. 1. The modular geometry sub-domain.
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sources. The most significant difference between CPM and CDP is
that in CDP only fine regions traversed by a characteristic line
within a specified sub-domain are coupled which can significantly
reduce the computational requirements. To overcome the
drawback of CPM when dealing with big size problems, the inter-
face current method (ICM) (Mohanakrishnan, 1981) was developed
which couples the sub-domains with interface current of interface
current moments, and within the domains the fine regions are cou-
pled by the CPM. However, compared to the interface current
method, CDP doesn’t introduce the approximation at the interface
of the subdomain and the anisotropic sources.

The standard method of 2-D and 3-D modular characteristics
has been implemented in MPACT (Michigan PArallel Characteris-
tics Transport code) as the fundamental discretization for the
MOC transport kernels. As described in previous research, the
method of modular characteristic direction probabilities (Liu
et al., 2013) was extended for 3D transport calculations using the
same ray tracing scheme as the MOC. However, boundary averaged
ray tracing information is provided only for unique sub-domains
which has the benefit of reducing the storage and data transfer
for every sub-domain because of the reduced number of boundary
conditions.

At the same time, the CDP is capable of providing the same
accuracy as MOC if the unique boundary sub-domains are the same
size as the MOC ray spacing. The only difference in the methods
then would be that instead of performing the transport sweep
ray by ray of the MOC, the CDP method obtains the outgoing angu-
lar flux and fine region flux by direct multiplication of a matrix
which contains the collision and transmission probabilities with
a vector which includes the incoming angular flux and the fine
region source. The collision and transmission probabilities in the
CDP are derived by integrating the traditional MOC equations
along a characteristic line. So in principle, the method of character-
istics direction probabilities is mathematically consistent with the
conventional MOC if no averaging approximation at the sub-
domain boundary is introduced. This has been confirmed by the
previous work (Liu et al., 2013). The essential new feature provided
by the boundary averaged CDP introduced here is the potential to
introduce angular dependent averaging methods which could
coarsen the boundary regions for particular angles, and thereby
reduce the computational burden without compromising accuracy.

In the following section the basic equations of the MOC are pro-
vided along with the derivation of the CDP method. The third sec-
tion describes the analysis model introduced to analyze the
boundary outgoing angular flux and the boundary averaging
scheme. Numerical results are shown in the subsequent section
and the final section provides a summary and conclusions.

2. The method of characteristics direction probabilities

2.1. The method of characteristics

The classical method of characteristics for solving partial
differential equations has been successfully applied to the
Boltzmann Transport equation (BTE) and implemented in several
reactor analysis codes. The group-wise form of the BTE for the
system R with a boundary oR is given by

X � rugðr;XÞ þ Rt;gugðr;XÞ ¼ Qgðr;XÞ ð1Þ

and

Q gðr;XÞ ¼ Q f ;gðrÞ þ Qiso
s;gðrÞ þ Q aniso

s;g ðr;XÞ ð2Þ

where Qf,g(r) is the fission source term and the scattering
source terms include both isotropic Qiso

s;gðrÞ and anisotropic
Qaniso

s;g ðr;XÞscattering. The boundary condition is given by
ugðr;XÞ ¼ f ðr;XÞ r ¼ @R;X � n < 0: ð3Þ

which means that the incoming angular flux is distributed as the
function f on the external boundary.

The MOC equation provides a solution of the Boltzmann Trans-
port equation along a line in a particular direction and it reduces to
the total differential Eq. (4) which is simplified by removing the
energy group subscript g.

duðr0þ sXm;XmÞ
ds

þRtðr0þ sXmÞuðr0þ sXm;XmÞ¼Qðr0þ sXm;XmÞ

ð4Þ

where r0 is the starting point of a characteristic line and s is the
distance from the initial point to the current point along a specified
direction Xm.

When solving the equation, we assume that the source and
properties are constant in a small region Di.

Qðr;XmÞ ¼ Q iðXmÞ; Rtðr0 þ sXmÞ ¼ Rt;i; r 2 Di:

In this small region if we know the incoming angular flux along the
line k which starts at the boundary r0 e oDi and which can be
written as uin

i;kðXmÞ , then the MOC equation has the analytic solu-
tion along this line in the region Di.

ui;kðr0þ sXm;XmÞ¼uin
i;kðXmÞexp �Rt;is

� �
þQ i;kðXmÞ

Rt;i
1�exp �Rt;is

� �� �
:

ð5Þ

The outgoing angular flux from Di along the line can then be calcu-
lated as:

uout
i;k ðXmÞ ¼ uin

i;kðXmÞ exp �Rt;isi;k

� �
þ Q i;kðXmÞ

Rt;i
1� exp �Rt;isi;k

� �� �
;

ð6Þ

where si,k is the length between the outgoing point and the incom-
ing point of the line k in Di. The average segment angular flux can
then be given as:

ui;kðXmÞ � si;k ¼
Q i;kðXmÞ

Rt;i
si;k þ

uin
i;kðXmÞ �uout

i;k ðXmÞ
Rt;i

: ð7Þ
2.2. Method of characteristics direction probabilities

The three-dimensional characteristics direction probabilities
(CDP) include the directional transmission and collision probabili-
ties which are stored for all the unique geometries of the problem.
The transmission and collision probabilities are derived from the
MOC Eq. (5). For a given geometry sub-domain (see Fig. 1), the out-
going angular flux can be written in terms of the probabilities as:

uout
i;k ðXmÞ ¼ Tk;in�>outðXmÞuin

j¼1;kðXmÞ þ
Xi

j¼1

Tk; j�>outðXmÞQ j;kðXmÞ; ð8Þ

where k is the characteristic line index and i is the flat source region
index along the characteristic line shown in Fig. 1, and where j = 1 is
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the first region traversed by the characteristic line k , and where
uout

i;k ðXmÞ and uin
j¼1;kðXmÞ represent the outgoing angular flux and

incoming angular flux along the characteristic line k of the sub-
domain, respectively. In Eq. (8), the transmission probabilities can
be calculated by substituting uin

i;kðXmÞ ¼ uout
i�1;kðXmÞ into Eq. (6)

recursively until i � 1 = 1 .

Tk;in�>outðXmÞ ¼ exp �
Xi

j¼1

ðRt; jsj;kÞ
 !

Tk;j�>outðXmÞ ¼
1

Rt; j
1� exp �Rt; jsj;k

� �� �
exp �

Xi

l¼jþ1

Rt;lsl;k

 ! ð9Þ

where j + 1 is the next fine mesh region index of jth region in the
down-streaming direction.In addition to the outgoing angular flux,
the segment average angular flux of the fine mesh region can be
obtained by substituting Eq. (8) and uin

i;kðXmÞ ¼ uout
i�1;kðXmÞ into Eq.

(7) and then expressing it in terms of the incoming angular flux
and fine mesh region source of the sub-domain.

ui;kðXmÞsi;k ¼ Pk;in�>iuin
1;kðXmÞ þ

Xi

j¼1

Pk;j�>iQ j;kðXmÞ; ð10Þ

where

Pk;in�>iðXmÞ ¼
exp �

Pi�1
j¼1ðRt; jsj;kÞ

� �
1� exp �Rt;isi;k

� �� �
Rt;i

Pk;j�>iðXmÞ ¼

si;kRt;i� 1�exp �Rt;i si;kð Þ½ �
Rt;iRt;i

; j ¼ i

1�exp �Rt; jsj;kð Þ½ � exp �
Pi�1

l¼jþ1
Rt;l sl;k

� �
1�exp �Rt;i si;kð Þ½ �

Rt; jRt;i
; j–i

8>><>>: :

ð11Þ

When the average is determined, the boundary is divided into
several sub-boundaries as shown in Fig. 2. Then the outgoing
angular flux of the sub-boundary will be:

uout
bo ðXmÞ ¼

X
bi2NðboÞ

Tbi�>boðXmÞuin
biðXmÞ

þ
X

j2JðboÞ
Tj�>outðXmÞQj;kðXmÞ; ð12Þ

where

Tbi�>boðXmÞ ¼
X

k2ðbo\biÞ

AkTk;in�>outðXmÞ
Abo

;

Tj�>boðXmÞ ¼
X

k2ðbo\jÞ

AkTk;j�>outðXmÞ
Abo

;

ð13Þ

where N(bo) is the total number of incoming sub-boundaries that
will be traversed by the characteristic going through sub-boundary
bo , J(bo) is the total number of sub-domains whose source will con-
tribute to the sub-boundary bo , Ak is the cross-sectional area of the
Fig. 2. The sub-boundaries of a sub-domain.
characteristic track orthogonal to the characteristic track direction,
Abo is the projection area of the sub-boundary, and k e (bo \ bi)
means the characteristic lines traverse both the bi and bo sub-
boundaries.

Eq. (10) can then be used to calculate the segment average
angular flux. The region average angular flux can be derived by
summing all segment average angular fluxes in the region Di:

uiðXmÞ ¼
P

k2iui;kðXmÞsi;kAi;k

Vi
: ð14Þ

By substituting Eq. (10) into Eq. (14) and expressing it in terms of
the incoming angular fluxes and fine mesh region sources, the
region average angular flux can then be determined:

uiðXmÞ ¼
X

bi2NðiÞ
ðPbi�>iðXmÞubiðXmÞÞ þ

X
j2upðiÞ

Pj�>iðXmÞQ j;kðXmÞ; ð15Þ

where

Pbi�>iðXmÞ ¼
P

k2ðbi\iÞPk;in�>iðXmÞAi;k

Vi

¼
X

k2ðbi\iÞ

Ai;k

Rt;iV i
exp �

Xi�1

j¼1

ðRt;jsj;kÞ
 !

1� exp �Rt;isi;k

� �� �
;

ð16Þ

and

Pj�>iðXmÞ ¼

P
k2ðiÞ

si;kRt;i� 1�exp �Rt;i si;kð Þ½ �ð ÞAi;k

VRt;iRt;i
; j ¼ i

X
k2ði\jÞ

½1�expð�Rt;j sj;kÞ� exp �
Pi�1

l¼jþ1
Rt;l sl;k

� �
1�exp �Rt;i si;kð Þ½ �Ai;k

ViRt;jRt;i
; j–i

8>>>><>>>>:
ð17Þ

In Eq. (15), j e up(i) refers to the regions in the up-streaming direc-
tion of region i, and in Eq. (17) k e (i \ j) refers to the characteristic
lines which traverse through both region i and j. Therefore the
region average angular flux couples all the incoming angular fluxes
which traverse through this region and the fine mesh regions in the
up-stream direction.

The following reciprocity relations follow directly from Eqs.
(17), (16) and (9):

Pj�>iðXmÞVi ¼ Pi�>jðXmÞVj ð18Þ

Pk;bi�>iðXmÞVi ¼ Tk;i�>biðXmÞAbi ð19Þ

and

Tbi�>boðXmÞAbo ¼ Tbo�>biðXmÞAbi ð20Þ

A compact linear expression for calculating the outgoing angular
flux and region average angular fluxes in the modular geometry
sub-domain can be formed using Eqs. (12) and (15):

u!out

/
!

" #
¼ A

u!in

Q
!

 !
ð21Þ

and,

u
!out ¼

uout
bo¼1ðXmÞ

uout
bo¼2ðXmÞ

..

.

uout
bo¼KðXmÞ

266664
377775; /

!
¼

/i¼1ðXmÞ
/i¼2ðXmÞ

..

.

/i¼IðXmÞ

266664
377775;

u
! in ¼

uin
bi¼1ðXmÞ

uin
bi¼2ðXmÞ

..

.

uin
bi¼KðXmÞ

2666664

3777775;Q
!
¼

Q i¼1ðXmÞ
Q i¼2ðXmÞ

..

.

Qi¼IðXmÞ

266664
377775: ð22Þ
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Fig. 3. The sweeping order for MOC and CDP. Fig. 5. Six azimuthal angles.
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where u
!out and u

! in are the outgoing and incoming angular fluxes of
the all sub-boundaries of the geometry sub-domain, which have the
same number of the sub-boundaries, and /

!
and Q

!
are the region

average angular fluxes and region angular source of the fine regions.
The matrix A contains all the transmission and collision probabili-
ties described in Eqs. (17), (16) and (13). If the incoming angular
flux and region sources are known, then the outgoing angular fluxes
and region average angular flux can be directly calculated with this
linear system.

The sweeping iteration for MOC and CDP is compared for a
2 � 2 array of pins as shown in Fig. 3. In the left side of Fig. 3, a typ-
ical sweeping strategy is shown for the conventional MOC in which
the ray tracing is performed ray by ray (note the hard black lines),
while on the right side of the figure the CDP sweep is performed
sub-domain by sub-domain. For a given initial value of the incom-
ing angular flux of the system, the outgoing angular fluxes and
region average angular fluxes of the left bottom sub-domain can
be obtained by Eq. (21). The same calculations are then performed
on the right bottom sub-domain and the left top sub-domain until
all modular sub-domains are swept. For the direction shown in
Fig. 3, the sweeping begins from the left bottom corner, but for
the opposite direction the first sub-domain to be computed is from
the right top corner. So the sweeping order is different for the
directions in different octants.

3. The angle dependent boundary averaging method

3.1. Analysis of the boundary angular fluxes

Averaging of the boundary angular fluxes can reduce the com-
putational effort, but could potentially compromise the accuracy
of the solution. A detailed analysis was performed on the impact
of averaging by using a sequence of typical cell problems with
cross sections from the C5G7 Benchmark. The first case analyzed
was a single pin cell with reflective boundaries and six azimuthal
angles as shown in Figs. 4 and 5.

The outgoing angular fluxes on the right boundary for the first
energy group are tallied for different angles as shown in Fig. 6. In
this figure the magnitude of the angular flux (y-axis) is shown at
1.26cm

Bottom

Top 

Fig. 4. The cell configuration.
various points from the bottom to the top of the pin boundary
(x-axis). These results indicate that: the variation of the angular
flux of the 6th angle is relatively smooth while the variation for
smaller angles is more pronounced when moving along the bound-
ary from the bottom to the top of the pin.

In order to understand the reasons for the variation, a detailed
analysis was performed of the dependence of the outgoing angular
flux on the incoming angular flux, the internal sources, and the
optical thickness as shown in Eq. (22):

uout
i;k ðXmÞ ¼ uin

i;kðXmÞexpð�Rt;isi;kÞ þ
Q i;kðXmÞ

Rt;i
½1� expð�Rt;isi;kÞ�

ð23Þ

In order to assess the impact of the source distribution, three
different pin cell cases were run with different mesh as shown in
Fig. 7. All three cases gave the same results as shown in Fig. 6,
which suggest that the variation of the angular flux at the bound-
ary is not dominated by the source and the mesh discretization.

In order to investigate the impact of the incoming angular flux
on the variation of the angular flux on the boundary, a larger case
was run with an 8 � 8 array of pin cells as shown in Fig. 8. This
problem was performed with the vacuum boundary condition on
the left face and reflective boundary conditions on other faces. In
order to understand the results, it is instructive to first look at
the impact of only the first angle on the outgoing angular flux on
the right boundary as shown in Fig. 8. As indicated, only the
regions between the two black lines contribute to the outgoing
angular flux on the right face of the right-top pin. In order to more
easily understand the variation in the outgoing flux at the
boundary it is instructive to express the flux as the sum of the con-
tributions of the fluxes from each of the eight columns of pins
(Note that the pins are numbered from right to left on the x-axis
in Fig. 8). The outgoing angular flux can then be calculated by:

uout
k ¼

P
n
buout

n;k wn;k

buout
n;k ¼

R Sn

0 Q nðsÞexp �Rt;sðsn � sÞð Þds

wn;k ¼ exp �
R

Rt;s;kds
� � ð24Þ

where buout
n;k is the outgoing angular flux of the column n along the

kth line without incoming angular flux; wn,k is contribution weight
of the nth column along the kth line to the final outgoing angular
flux;

R
Rt,s,kds is the optical thickness from the nth column to the

final outgoing boundary along the kth line.
The outgoing angular flux, buout

n;k , can be obtained by integrating
the characteristic equation along the line analytically or by simply
performing the calculation with the vacuum boundary condition
on the left. Fig. 9 shows the contributions of the first three columns
to the group 1 angular flux at the right boundary of the top pin in
column 1.
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Fig. 6. The outgoing angular flux of the first group for different angles.

Fig. 7. Different Pin Cell Mesh Discretizatoin.
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It is apparent that:

(1) The variation of the angular flux of every column is relatively
simple since it rises when the characteristic line traverses
the fuel, and decreases when the characteristic lines leaves
the fuel;

(2) The shape of variation is the same but shifts some distance
to right side for columns 2 and 3 which can be explained
by examining the outgoing boundary position of every
column as shown in Fig. 8.

The contribution weight in Eq. (23) is dependent on the total
cross section and the segment length in the fuel and moderator.
However, because the difference of the group 1 total cross sections
between the fuel and moderator is small, the calculation of the
contribution weights can be simplified by using the average total
cross sections. The weights would then be constant for every
column and can be calculated using:

wn ¼ exp �
Z

Rt;sds
� 	

¼ exp �ðn� 1ÞRt;averagescolumn
� �

ð25Þ
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Fig. 10. The final outgoing angular flux shape of the first angle.
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where, n is the column index; Rt,average is the average total cross sec-
tion of the fuel and moderator; scolumn is the length traversed by the
characteristic line in one column. The contribution weights of every
column for each angle can be determined using Table 1.

According to Table 1, only the first 8 columns are considered for
the first angle since the weight of the 9th column would be less
than 10%. Therefore, it can be neglected for purposes here of
understanding the variation of the right boundary flux on the pin
in column 1. In Fig. 10, the bottom-right part inset shows the con-
tribution of every column considering its contribution weight as
well as the final outgoing angular flux in the top portion of the
inset. As indicated, the lowest point in magnitude highlighted in
the figure occurs when the line enters the fuel of the first column
and exits the second column. This inflection point occurs whenever
the line is coming out of the fuel region in one column or going into
the fuel region in another column.

The variations of the other angles are slightly more complicated,
but they can be simulated using the same methods. As an example
the results for the third angle are shown in Fig. 11.

The observations above will contribute to the understanding of
the accuracy achievable for each of the averaging cases used in the
following sections. This analysis will also provide a physical basis
for selecting an averaging that depends on the angle.
Fig. 12. The characteristic rays of a sub-domain.
3.2. The angle dependent boundary averaging method

Similar to the MOC modular ray tracing technique, the ray
tracing information for the method of Boundary Averaged
Characteristics Direction Probabilities is stored for all unique
sub-domains as shown in Fig. 12. The easiest way to perform the
averaging is to define a fixed number of sub-boundaries on each
face of the cell. However, this method does not consider the fact
that the shape of the outgoing flux is different for different angles
and groups. So an angle dependent boundary averaging method is
introduced. For purposes of describing the boundary averaging
process, it is useful to introduce the coarse ray spacing of the radial
Table 1
The contribution weights.

Column 1 2 3 4 5 6 7 8

Angle 1 1.0E+0 7.4E�1 5.5E�1 4.1E�1 3.0E�1 2.2E�1 1.6E�1 1.2E�1
Angle 2 1.0E+0 7.2E�1 5.2E�1 3.8E�1 2.7E�1 2.0E�1 1.4E�1 1.0E�1
Angle 3 1.0E+0 6.9E�1 4.7E�1 3.2E�1 2.2E�1 1.5E�1 1.0E�1 7.2E�2
Angle 4 1.0E+0 6.1E�1 3.8E�1 2.3E�1 1.4E�1 8.7E�2 5.3E�2 3.3E�2
Angle 5 1.0E+0 4.6E�1 2.1E�1 9.7E�2 4.5E�2 2.0E�2 9.5E�3 4.4E�3
Angle 6 1.0E+0 1.0E�1 1.0E�2 1.1E�3 1.1E�4 1.1E�5 1.2E�6 1.2E�7
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Fig. 13. The coarse ray spacing. Fig. 15. Boundary index average of the other faces.
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direction (see Fig. 13.dCr) and the coarse ray spacing of z-axial
direction (see Fig. 13.dCz).

The average is performed for all faces, respectively, and it is dif-
ferent for the TOP/BOTTOM faces than for the other faces. As
shown in Fig. 14 for the TOP/BOTTOM faces, the boundary indices
coming from the same flat source region between coarse rays are
averaged together. So only the coarse ray spacing of the radial
direction is useful when the average is determined for the TOP/
BOTTOM faces. This averaging method has the benefit that at the
same time it can determine all the outgoing fluxes which are out-
going from the same flat source region but in different angles and
space (see the right two figures in Fig. 15).

The average of the other faces is performed on every sub-bound-
ary which is determined by the coarse rays shown in Fig. 15. This
averaging strategy defines different number of sub-boundaries on
the face for different angles, which is consistent with the shape of
the outgoing flux on the face. The angles for which the shape change
is most dramatic will have more sub-boundaries as shown in
Fig. 15.
4. Numerical results

The accuracy of the boundary-averaged CDP method proposed
here were evaluated using two test problems. The first is a 2D
pin case, and the second is a standard reactor benchmark pub-
lished by Takeda and Ikeda (1991).
4.1. The 2D pin case

This 2D problem is designed to analyze the impact of averaging
on the outgoing angular flux, region flux and eigenvalue. The
configuration of the pin is the same with Fig. 4 and C5G7 cross-sec-
tions are used as well. The angular quadrature of six azimuthal
angles and one polar angle are applied to show the impact of
averaging for different angles. The ray spacing is 0.03 cm and three
different coarse ray spacing are chosen: (1) 0.06 cm, (2) 0.1 cm (3)
0.2 cm, and case 3 is relatively aggressive to show the trend while
the ray spacing of coarse rays grows. All the results are compared
to the case without average which gives an identical result to the
MOC solution.
Fig. 14. Boundary index averag
The right boundary angular fluxes are tallied for several angles
and groups. In Fig. 16, the first group’s outgoing angular fluxes of
angle 1 are given for both reference and case 3, and the relative
difference is shown at the same time. More comparisons for other
cases are demonstrated in Figs. 17–23.

The outgoing angular fluxes of group 1 for different angles are
given in Figs. 17–19. The outgoing angular fluxes of angle 1 for
different groups are shown in Figs. 17, 20 and 21. It can be con-
cluded that the difference of outgoing angular flux increases as
the coarse ray spacing grows. For the first two cases, the difference
of boundary angular fluxes for different angles and different groups
are relatively small, indicating that appropriate coarse ray spacing
will gives satisfying angular flux shape. Even for the more aggres-
sive averaging of case three, only angular fluxes of several points
exceed 2%, because 7 flat angular fluxes is not enough to describe
the details of the angular flux shown in case3.

The eigenvalues for all cases are shown in Table 2. As indicated
the eigenvalues for the first two cases agree well with the reference
because the boundary averaging in these cases provides a better
approximation of the outgoing angular fluxes, and the eigenvalues
of case 3 just has 30 pcm difference. The differences of the scalar
fluxes for all flat source regions are shown in Fig. 22, from which
it can be seen that the differences of scalar fluxes of all flat source
regions for all groups are less than 1%. 1% differences occur at the
regions closed to the boundary because of the about 2% difference
of the several boundary angular fluxes.
4.2. KUCA Takeda core benchmark

The Kyoto University Critical Assembly (KUCA) benchmark was
published by Takeda and Ikeda in 1991 (Takeda and Ikeda, 1991).
This problem models a small Light Water reactor core of dimensions
50 cm � 50 cm � 50 cm, with three material regions including fuel,
control rod, and reflector. Fig. 23 shows the core configuration and
the 2 group cross section are provided in Appendix A. The control
rod worth was evaluated for this problem by inserting and removing
the control rod.

The two cases were performed with identical discretizations in
which the sub-domain size was 1 cm � 1 cm � 1 cm with 32 fine-
regions in each sub-domain. The ray spacing was 0.03 cm and an
S4 angular quadrature sets was used in all cases. The results
e of the TOP/BOTTOM face.
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Fig. 16. The first group’s outgoing angular flux of angle 1 and the difference between Case 3 and reference.

Fig. 17. The relative difference of outgoing angular flux of group 1 of the first angle.

Fig. 18. The relative difference of outgoing angular flux of group 1 of the forth angle.

Fig. 19. The relative difference of outgoing angular flux of group 1 of the sixth angle.

Fig. 20. The relative difference of outgoing angular flux of group 5 of the first angle.
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Fig. 21. The relative difference of outgoing angular flux of group 7 of the first angle.

Table 2
The keff of the pin problem.

No_average Case 1 Case 2 Case 3

1.32528 1.32531 1.32536 1.32558

Fig. 22. The relative difference of scalar flux for case 2.
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Fig. 23. KUCA core benchmark core configuration.

Table 3
Comparison of k-eff for KUCA Benchmark.

Method UnRodded Rodded CR-worth

Ref Monte Carlo 0.9780 0.9624 1.66E�02
±0.0006 ±0.0006 ±0.09E�2

MOC 0.9776 0.9627 1.59E�02
CDP_case1 0.9776 0.9627 1.59E�02
CDP_case2 0.9773 0.9624 1.59E�02
CDP_case3 0.9769 0.9619 1.59E�02
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Table 4
Computing time comparison.

Group UnRodded Rodded

MOC CDP_case1 CDP_case2 CDP_case3 MOC CDP_case1 CDP_case2 CDP_case3

Total time/s 3357.8 1041.04 273.69 119.28 3494.5 916.01 272.08 116.7
Speedups – 3.2 12.3 28.2 – 3.8 12.8 29.9

Table 5
Comparison of Region-averaged fluxes.

Method Group UnRodded Rodded

Core Reflector Void Core Reflector CR

Ref Monte-Carlo 1 4.7509E�03 5.9251E�04 1.4500E�03 4.9125E�03 5.9109E�04 1.2247E�03
0.10% 0.21% 0.47% 0.10% 0.21% 0.48%

2 8.6998E�04 9.1404E�04 9.7406E�04 8.6921E�04 8.7897E�04 2.4604E�04
0.12% 0.23% 0.63% 0.13% 0.23% 0.72%

MOC 1 �0.36% 0.86% 3.01% �0.87% 0.30% 1.70%
2 0.32% �1.43% �0.98% �0.08% �1.56% 0.10%

CDP_case1 1 �0.36% 0.86% 3.01% �0.87% 0.30% 1.70%
2 0.32% �1.43% �0.98% �0.08% �1.56% 0.10%

CDP_case2 1 �0.37% 0.89% 3.00% �0.88% 0.34% 1.72%
2 0.32% �1.58% �1.09% �0.08% �1.70% 0.21%

CDP_case3 1 �0.39% 0.94% 2.97% �0.91% 0.40% 1.70%
2 0.32% �1.84% �1.26% �0.08% �1.97% 0.16%
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include the reference Monte Carlo and MOC as well as the CDP
results with three different averaging cases:

(1) CDP_Case1: CDP calculation without average,
(2) CDP_Case2: CDP averaged with the coarse ray spacing of

0.03 cm in the radial plane and 0.15 cm in the axial
direction,

(3) CDP_Case3: CDP averaged with the coarse ray spacing of
0.1 cm in the radial plane and 0.3 cm in the axial direction.

The reference results of the Monte-Carlo method were provided
in reference (Takeda and Ikeda, 1991) and the k-eff and control rod
worth (k � k0)/(kk0) are compared to these results in Table 3. As
expected, the CDP without average is consistent to the MOC, and
the average introduces some discrepancy in k-eff.

Because this problem has a significant axial flux distribution
compared to the previous test problems, the use of a smaller
number of flat source regions on the TOP/BOTTOM interfaces intro-
duces some discrepancy in k-eff. computing efforts comparison is
listed in Table 4, and the comparison of the region-averaged fluxes
for the rod inserted and withdrawn is shown in Table 5.

The overall conclusion from these results is that CDP with
boundary averaging can achieve more then 10 times speedup
while providing satisfactory results for this problem with the
above discretization.
5. Summary and conclusions

The research here investigated the method of characteristic direc-
tion probability (CDP) as a means to reduce the MOC computational
time for 3D problems. The CDP combines the geometry flexibility of
the MOC and the computing efficiency of the CPM that has been pop-
ularly used in lattice codes. At the same time the CDP can reduce
some of the drawbacks of CPM, such as the limitations in scattering
treatments, as well as the high computational overhead for calculat-
ing the probability matrices and solution of the matrix system. In the
CDP method, the probabilities only couple the fine mesh regions tra-
versed by the characteristic lines in a particular direction within a
sub-domain. However the probability matrix can still be large in
CDP, so the additional feature was introduced of boundary averaging
which reduced the number of outgoing/incoming angular fluxes
transferred between domains and computational efforts.

The impact of averaging on the accuracy of the boundary angu-
lar flux, scalar flux and eigenvalue was investigated, and the results
shows that the method has the ability to adjust the coarseness of
the boundary averaging to accommodate a desired accuracy and
computational time. Furthermore, the numerical results provided
insight about the optimal averaging strategy which would improve
the performance such as using different averaging strategies for
different angles. Work is continuing on the investigation of adap-
tive methods which will adjust the boundary averaging coarseness
‘‘on the fly’’ to accommodate the heterogeneity of the problem and
thereby improve the performance of the method and reduce the a
priori effort required by the analyst to determine the optimum
coarseness of the boundary averaging regions.

In the CDP, the collision and transmission probabilities need to
be calculated for each direction and group, which increases the
computing effort. To minimize the computing burden, these proba-
bilities are calculated and stored before the source iteration instead
of calculating them during the sweep. It needs to be addressed that
because the CDPs are dependent on energy and direction, for the
fresh core, only the CDPs of the unique sub-domains are stored,
but when the burnup is considered the CDPs of all sub-domains
are stored, which might make the memory issue be severe. Com-
pared to the 2D-1D decoupling MOC method, in which the axial size
is relative large and be solved with diffusion or nodal methods, the
axial size of 3D MOC and CDP should not be too big because of the
flat source assumption.
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Appendix A. Cross sections

Tables A.1–A.3.



Table A.1
KUCA core benchmark two-group cross sections and energy group structure for KUCA.

Region Group Rabs/cm�1 mRf/cm�1 R1�1/cm�1 R1�2/cm�1 v

Core fuel 1 8.52709E�03 9.09319e�3 1.92423e�1 2.28253e�2 1.0
2 1.58196E�01 2.90183e�1 0.00000E+0 8.80439e�1

Control rod 1 1.74439E�02 0.00000E+0 6.77241e�2 6.45461e�5 –
2 1.82224E�01 0.00000E+0 0.00000E+0 3.52358e�2

Reflector 1 4.16392E�04 0.00000E+0 1.93446e�1 5.65042e�2 –
2 2.02999E�02 0.00000E+0 0.00000E+0 1.62452E+0

Empty (void) 1 4.65132E�05 0.00000E+0 1.27700e�2 2.40997e�5 –
2 1.32890E�03 0.00000E+0 0.00000E+0 1.07387e-2

Table A.2
Fuel-clad macroscopic cross-sections for C5G7 benchmark.

Transport Cross-section/cm�1 Absorption Cross-section/cm�1 Capture Cross-section/cm�1 Fission Cross-section/cm�1 Nu Chi

Group 1 1.77949E�01 8.02480E�03 8.12740E�04 7.21206E�03 2.78145E+00 5.87910E�01
Group 2 3.29805E�01 3.71740E�03 2.89810E�03 8.19301E�04 2.47443E+00 4.11760E�01
Group 3 4.80388E�01 2.67690E�02 2.03158E�02 6.45320E�03 2.43383E+00 3.39060E�04
Group 4 5.54367E�01 9.62360E�02 7.76712E�02 1.85648E�02 2.43380E+00 1.17610E�07
Group 5 3.11801E�01 3.00200E�02 1.22116E�02 1.78084E�02 2.43380E+00 0.00000E+00
Group 6 3.95168E�01 1.11260E�01 2.82252E�02 8.30348E�02 2.43380E+00 0.00000E+00
Group 7 5.64406E�01 2.82780E�01 6.67760E�02 2.16004E�01 2.43380E+00 0.00000E+00

Scattering block

To group 1/cm�1 To group 2/cm�1 To group 3/cm�1 To group 4/cm�1 To group 5/cm�1 To group 6/cm�1 To group 7/cm�1

Group 1 1.27537E�01 4.23780E�02 9.43740E�06 5.51630E�09 0.00000E+00 0.00000E+00 0.00000E+00
Group 2 0.00000E+00 3.24456E�01 1.63140E�03 3.14270E�09 0.00000E+00 0.00000E+00 0.00000E+00
Group 3 0.00000E+00 0.00000E+00 4.50940E�01 2.67920E�03 0.00000E+00 0.00000E+00 0.00000E+00
Group 4 0.00000E+00 0.00000E+00 0.00000E+00 4.52565E�01 5.56640E�03 0.00000E+00 0.00000E+00
Group 5 0.00000E+00 0.00000E+00 0.00000E+00 1.25250E�04 2.71401E�01 1.02550E�02 1.00210E�08
Group 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.29680E�03 2.65802E�01 1.68090E�02
Group 7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 8.54580E�03 2.73080E�01

Table A.3
Moderator macroscopic cross-sections for C5G7 benchmark.

Transport Cross-section/cm�1 Absorption Cross-section/cm�1 Capture Cross-section/cm�1

Group 1 1.59206E�01 6.01050E�04 6.01050E�04
Group 2 4.12970E�01 1.57930E�05 1.57930E�05
Group 3 5.90310E�01 3.37160E�04 3.37160E�04
Group 4 5.84350E�01 1.94060E�03 1.94060E�03
Group 5 7.18000E�01 5.74160E�03 5.74160E�03
Group 6 1.25445E+00 1.50010E�02 1.50010E�02
Group 7 2.65038E+00 3.72390E�02 3.72390E�02

Scattering block

To group 1/cm�1 To group 2/cm�1 To Group 3/cm�1 To group 4/cm�1 To group 5/cm�1 To group 6/cm�1 To group 7/cm�1

Group 1 4.44777E�02 1.13400E�01 7.23470E�04 3.74990E�06 5.31840E�08 0.00000E+00 0.00000E+00
Group 2 0.00000E+00 2.82334E�01 1.29940E�01 6.23400E�04 4.80020E�05 7.44860E�06 1.04550E�06
Group 3 0.00000E+00 0.00000E+00 3.45256E�01 2.24570E�01 1.69990E�02 2.64430E�03 5.03440E�04
Group 4 0.00000E+00 0.00000E+00 0.00000E+00 9.10284E�02 4.15510E�01 6.37320E�02 1.21390E�02
Group 5 0.00000E+00 0.00000E+00 0.00000E+00 7.14370E�05 1.39138E�01 5.11820E�01 6.12290E�02
Group 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 2.21570E�03 6.99913E�01 5.37320E�01
Group 7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.32440E�01 2.48070E+00
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