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Abstract

A discrete ordinates finite-element method for solving three-dimensional first-order neutron transport equation is proposed using a
least-squares variation. It avoids the singularity in void regions of the method derived from the second-order equation. Different from
using the standard Galerkin variation applying to the first-order equation, the least-squares variation results in a symmetric matrix,
which can be solved easily and effectively. The approach allows a continuous finite-element. To eliminate the discontinuity of the angular
flux on the fixed flux boundary in the spherical harmonics method, the equation is discretized using the discrete ordinates method for
angular dependency. A three-dimensional transport simulation code is developed and applied to some benchmark problems with
unstructured geometry. The numerical results demonstrate the accuracy and feasibility of the method.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Many effective methods in recent years have been pro-
posed in solving the multi-group neutron transport equa-
tion. For the regular geometry problems the equation is
generally discretized using the finite difference method or
the nodal method (Wager and Muller, 1984; Badruzzaman,
1985) for spacial dependency. For the unstructured geom-
etry problems it is often discretized using the finite-element
method (Ackroyd, 1995), based on either the first-order
transport equation, the even-parity second-order equation
(Morel and McGhee, 1999; Christopher, 1999) or the sec-
ond-order SAAF equation (Morel and McGhee, 1999).
But the second-order form of transport equation contains
the inversion of the cross-section, which introduces singu-
larity in void regions (Varin and Samba, 2005). To elimi-
nate the singularity, the cross-section in the void region is
sometimes assumed to be not zero but 10�4 cm�1 so that
3D transport programs based on the second-order differen-
tial form can be used (Kobayashi et al., 2000).
0306-4549/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.anucene.2007.02.003

* Corresponding author.
E-mail address: haitaoju@gmail.com (H.-t. Ju).
Follow a rational line, the first-order transport equation
can be solved by the standard Galerkin methods or discon-
tinuous finite-element methods well. However standard
Galerkin methods result in a nonsymmetrical system of
equations which are difficult to be solved. Meanwhile dis-
continuous finite-element methods (Ackroyd et al., 1995;
Barros, 1997; Wareing et al., 2001; Warsa et al., 2002)
are required to accurately treat transport in heterogeneous
domain (Varin and Samba, 2005). The equation is hard to
be solved when the geometry is complex and multi-
dimensional.

An alternative least-squares finite-element has been pro-
posed by Manteuffel and Ressel in the single-group spher-
ical-harmonics transport equation in case of the isotropic
scattering (Manteuffel and Ressel, 1998; Manteuffel et al.,
2000). The equation has not the inversion of the cross-sec-
tion, so the method based on it can solve the problem with
void regions. Meanwhile least-squares technique can result
in a symmetric matrix, which can be solved by the effective
methods, such as the Cholesky method or conjugate gradi-
ent method.

Many studies have been published concerning the spher-
ical harmonics method (PN) using the least-squares finite-
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element method, but little work has been published on the
discrete ordinates method. In realistic problems the spher-
ical harmonics method exhibits discontinuous angular flux
on the fixed flux boundary. The flux distribution by the
spherical harmonics method shows some anomalies at the
material interfaces of large cross-section differences or at
the material void interface (Kobayashi et al., 2000). To
eliminate the anomaly, the angle variables are better to
be discretized by the discrete ordinates method (SN).
Although the discrete ordinates method exhibits ray-effect
problems, it is convenient to treat different boundary con-
ditions and requires less CPU time. It is easy to develop a
general code for different orders of fully symmetric quadra-
ture set.

Base on above analysis, the least-squares finite-element
method was selected to solve the multi-group first-order
transport equation in case of anisotropic scattering for
the discrete ordinates system. A three-dimensional trans-
port simulation code is developed and applied to the
benchmark problems with unstructured geometry.
2. Least-squares finite-element variation of first-order
neutron transport equation

2.1. The discrete ordinates discretization of neutron transport

equation

The traditional first-order neutron transport equation is

X � rUðr;E;XÞ þ RtUðr;E;XÞ ¼ Qs þ Qf þ S ð1Þ

where X is the unit direction vector and angular variable, r

is the space variable, E is the energy variable, U(r,E,X) is
the neutron angular flux, Rt is the total macroscopic
cross-section, Qs is the scattering source term, Qf is the fis-
sion source term and S is the fixed source term.

First, the energy variable is E discretized by the multi-
group approximation. Definition of group angular flux is
given as:

Ugðr;XÞ ¼
Z

DEg

Uðr;E;XÞdE g ¼ 1; 2; . . . ;G ð2Þ

Then the Eq. (1) may be written:

X � rUgðr;XÞ þ RtUgðr;XÞ ¼ Qs;g þ Qf;g þ Sg ð3Þ

The discrete ordinates method is a standard technique to
obtain numerical solution of transport equation. In the
method, the angular variable X is discretized into a finite
number of directions Xm, m = 1,2, . . .,N, and the angular
flux is calculated for each direction. Integrating Eq. (3)
over the domain DXm at the direction Xm, we obtain:Z

DXm

½X � rUgðr;XÞ þ RtUgðr;XÞ�dX

¼
Z

DXm

½Qs;g þ Qf;g þ Sg�dX ð4Þ

Here we define the following:
Z
DXm

Ugðr;XÞdX ¼ xmUm;gðrÞ ð5ÞZ
DXm

½X � rUgðr;XÞ�dX ¼ xm½X � rUgðr;XÞ�m ð6ÞZ
DXm

½Qs;g þ Qf ;g þ Sg�dX ¼ xm½Qs;g þ Qf;g þ Sg�m

¼ xm½Qs;m;g þ Qf ;m;g þ Sm;g� ð7Þ

where xm is the quadrature weight.
Then in the Cartesian X–Y–Z geometry, the discrete

ordinates form of the multi-group three-dimensional trans-
port equation can be expressed as follows:

lm
oUm;g

ox
þ gm

oUm;g

oy
þ nm

oUm;g

oz
þ RtUm;g

¼ Qs;m;g þ Qf ;m;g þ Sm;g ð8Þ

where lm, gm, nm is the directional cosine, Um,g = Ug(x,y,z,
lm,gm,nm) is the neutron angular flux of the point with the
coordinate is (x,y,z) in group g at the direction (lm,gm,nm),
Qs,m,g is the scattering source term in group g at the direc-
tion (lm,gm,nm), Qf,m,g is the fission source term in group g

at the direction (lm,gm,nm) and Sm,g is the fixed source term
in group g at the direction (lm,gm,nm), which is written as

Qs;m;g ¼ Qs;gðx; y; z; lm; gm; nmÞ

¼ 1

2p

XL

l¼0

2lþ 1

2

XG

g0¼1

Rg0!g;l

� P lðlmÞ
XM

m0¼1

xm0P lðlm0 ÞUg0 ðx; y; z; lm0 ; gm0 ; nm0 Þ
" #

þ 1

p

XL

l¼0

2lþ 1

2

XG

g0¼1

Rg0!g;l

�
Xl

k¼1

ðl� kÞ!
ðlþ kÞ! P k

l ðlmÞ
XM

m0¼1

xm0 � P k
l ðlm0 Þ

"
� cos kðum0 � umÞUg0 ðx; y; z; lm0 ; gm0 ; nm0 Þ

�
ð9Þ

where Rg0!g;l is the macroscopic scattering cross-section
from group g 0 to g, Pl(lm) is the Legendre polynomials
and P k

l ðlmÞ is the associated Legendre function, in case of
the anisotropic scattering source, and

Qs;m;g ¼ Qs;gðx; y; z; lm; gm; nmÞ

¼ 1

4p

XG

g0¼1

Rg0!g

XM

m0¼1

xm0Ug0 ðx; y; z; lm0 ; gm0 ; nm0 Þ ð10Þ

in case of the isotropic scattering source.
The Qf,m,g is given in the following way:

Qf ;m;g ¼
vg

4pk

XG

g0¼1

ðmRfÞg0
XM

m0¼1

xm0Ug0 ðx; y; z; lm0 ; gm0 ; nm0 Þ ð11Þ

For 3D cartesian geometry, the boundaries are planes
perpendicular to the coordinate axis. The following are
assumed as boundary conditions:
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1. The reflective boundary condition:

Um;g ¼ Ugðx; y; z; lm; gm; nmÞ ¼ Ugðx; y; z; lm0 ; gm0 ; nm0 Þ
ðx; y; zÞ 2 C1 ^ nðx; y; zÞ � X < 0 ð12Þ

where ðlm0 ; gm0 ; nm0 Þ is the reflective directional cosine of
(lm,gm,nm), n(x,y,z) is the normal direction at the point
(x,y,z).
2. The vacuum boundary condition:

Um;g ¼ Ugðx; y; z; lm; gm; nmÞ ¼ 0:0

ðx; y; zÞ 2 C2 ^ nðx; y; zÞ � X < 0 ð13Þ

Eqs. (8), (12) and (13) can be written in the form of
operator:

LUm;g ¼ F for ðx; y; z;XÞ 2 R� S1

Um;g ¼ Ugðx; y; z;lm0 ; gm0 ; nm0 Þ for ðx; y; zÞ 2 C1 ^ nðx; y; zÞ
�X < 0

Um;g ¼ 0:0 for ðx; y; zÞ 2 C2 ^ nðx; y; zÞ
�X < 0

8>>>>>><>>>>>>:
ð14Þ
2.2. Least-squares finite-element variation formulation of

neutron transport equation

A subspace V is given as:

V :¼ fU0 2 H 1ðr3Þg ð15Þ
where H1(r3) is a Hilbert space. The least-squares varia-
tional formulation of Eq. (14) is given by Manteuffel and
Ressel (1998):

min
Um;g2V

eF ðUm;gÞ; with eF ðUm;gÞ :¼
Z
½LUm;g � F �2 dr3 ð16Þ

Then the least-squares finite-element discretization
problem could be obtained:

Find Um;g 2 V s:t:

~aðUm;g;U
0Þ ¼ ~bðU0Þ 8U0 2 V

(
ð17Þ

where
~aðUm;g;U

0Þ :¼ ðLUm;g; LU0Þ ¼
R

LUm;g � LU0 dr3

~bðU0Þ :¼
R

F � LU0 dr3

(
ð18Þ

Then, the least-squares finite-element variation formula-
tion of Eq. (14) could be written as
R R
lm

oUm;g

ox þ gm
oUm;g

oy þ nm
oUm;g

oz þ RtUm;g

� �
lm

oU0

ox þ gm
oU0

oy þ n
�

R R
ðQs;m;g þ Qf;m;g þ Sm;gÞ lm

oU0

ox þ gm
oU0

oy þ nm
oU0

oz þ RtU
0

� �
d

Um;g ¼ Ugðx; y; z; lm0 ; gm0 ; nm0 Þ for ðx; y; zÞ 2 C1 ^ nðx; y; zÞ � X
Um;g ¼ 0:0 for ðx; y; zÞ 2 C2 ^ nðx; y; zÞ � X < 0

8>>>>><>>>>>:
3. Numerical results

A three-dimensional multi-group transport code, Least-
squares finite-element solution of neutron transport equa-
tion (LESFES), was developed according to the method
described above, by which the eigenvalue problems and
fixed source problems could be solved for several bench-
mark problems. For the resulting matrix is symmetric, it
is convenient to use one-dimensional data storage structure
in the code. Fast iterative methods could be used to solve
the equation. The triangular prism meshes were used in
the following problems, which had 15 nodes each. The
number of the Gauss integral points was 12. The conver-
gence criterions of eigenvalues and flux are 1.0E�5 and
1.0E�5.

3.1. Small LWR core benchmark

The first benchmark problem represents a small model
of a light water reactor (LWR), which is based on the
KUCA Facility. The reactor consists of a fuel region hav-
ing dimensional of 30 · 30 · 30 cm, a void region (in place
of control rods) of 5 · 10 · 50 cm and a reflector region
with 5 · 10 · 50 cm. The overall dimensions are 50 · 50
· 50 cm. The neutron interactions are modeled in two
energy groups representing the fast and thermal groups,
respectively (Ziver et al., 2005; Tekeda and Ikeda, 1991).
The constants (material cross-sections and fission spec-
trum) are not presented here. The interested reader could
refer to the benchmark problem book to obtain the data.
The following two cases are considered

Case 1: The control rod position is empty (void).
Case 2: The control rod is inserted.

The number of the meshes is 566. The side and the
height of the triangular prism are 5 cm and 15 cm for
0 < z 6 15 cm, 5 cm and 10 cm for 15 cm < z 6 25 cm
respectively. The number of unknowns (nodes) is 2158.
The eigenvalues Keff and the control rod worth are showed
in Table 1. The number of SN iterations is 126 for both
cases.

Due to the limitation of data memory for personal com-
puter, the S2 fully symmetric quadrature set is used here.
Although the order is lowest, the difference of the eigen-
values Keff is only 0.18% and 0.28%, respectively, compared
with the Monte-Carlo method. The difference of control
m
oU0

oz þ RtU
0
�

dxdy dz ¼

xdy dz

< 0

ð19Þ



Table 1
The eigenvalues and the control rod worth of small LWR core benchmark

Codes Keff Control rod worth

Rod-out Rod-in

Monte-Carlo 0.9778 0.9624 1.64E�2
MARK-PN 0.9766 0.9630 1.45E�2
LESFES 0.9761 0.9597 1.75E�2

Table 3
The region-averaged fluxes of Small FBR core benchmark

Codes Groups Core Axial
blanket

Radial
blanket

CRP

Monte-
Carlo

1G 4.2814E�5 5.1850E�6 3.3252E�6 2.5344E�5
2G 2.4081E�4 4.6912E�5 3.0893E�5 1.6658E�4
3G 1.6411E�4 4.6978E�5 3.2834E�5 1.2648E�4
4G 6.2247E�6 3.7736E�6 2.0473E�6 6.9840E�6

MARK-
PN

1G 4.2370E�5 5.4492E�6 3.5595E�6 2.5130E�5
2G 2.3926E�4 5.3696E�5 3.5354E�5 1.6795E�4
3G 1.6679E�4 5.7551E�5 4.0261E�5 1.3187E�4
4G 6.2855E�6 5.0063E�6 2.6785E�6 7.9182E�6

LESFES 1G 4.1575E�5 5.3595E�6 3.4131E�6 2.8020E�5
2G 2.3395E�4 4.5999E�5 3.0375E�5 1.6625E�4
3G 1.5862E�4 4.5237E�5 3.1723E�5 1.2028E�4
4G 5.9180E�6 3.5048E�6 1.9999E�6 6.0195E�6

Table 4
The cross-section constants for ISSA anisotropic scattering problem
(cm�1)

Region Rt mRf R0
s Rn

s n ¼ 1:5

1 1.1 1.0 0.6 0.1
2 0.95 0.0 0.55 0.15

Table 5
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rod worth is 6.7%, which is less than the difference of
MARK-PN code (11.6%).

3.2. Small FBR core benchmark

The benchmark is based on a model representing a small
model of a FBR. The dimensions of the model representing
the quarter of the core due to symmetry are 70 · 70 ·
150 cm. the model composed of a fuelled region, radial
and axial blankets and a control rod region. The case that
control rods withdrawn has been studied. The material
cross-sections (group constants) were available and mod-
eled in four energy groups for the case (Ziver et al., 2005;
Tekeda and Ikeda, 1991).

Here we only calculate one case: the control rod is
withdrawn (the control rod position is filled with Na).
The number of the meshes is 1680. The side and the
height of the triangular prism are 5 cm and 20 cm for
0 < z 6 20 cm, 5 cm and 55 cm for 20 < z 6 75 cm respec-
tively. The number of unknowns (nodes) is 5441. The
eigenvalues Keff and the region-averaged fluxes are shown
in Tables 2 and 3, respectively. The number of SN itera-
tions is 139.

The S2 fully symmetric quadrature set is used here
also. The difference of the eigenvalues is only 0.22%
and the difference of MARK-PN code is 0.64%. Most
of the differences of region-averaged fluxes are within
3.0%, except that in the CRP region of fourth region
reaches the maximum 13.8%. This is because the order
of the fully symmetric quadrature set is low and the
mesh size is a little coarse. But the result of MARK-
PN code is not close to the reference, neither and the dif-
ference is 13.3%.

3.3. ISSA anisotropic scattering benchmark

The theoretical model described above can be used to
solve the problem with anisotropic scattering. But there is
no proper three-dimensional benchmark published with
anisotropic scattering. So here the one-dimensional ISSA
anisotropic scattering benchmark (Issa et al., 1986) is tested
using the three-dimensional code LESFES. The 1D bench-
Table 2
The eigenvalues of small FBR core benchmark

Codes Monte-Carlo MARK-PN LESFES

Keff 0.9732 0.9794 0.9711
mark is simply extended to 3D problem with y = 1 cm and
z = 1 cm. Reflective boundary conditions are used at the
boundary planes y = 0, y = 1 cm, z = 0 and z = 1 cm.

The cross-section constants are given in Table 4 and the
eigenvalue are given in Table 5. The number of the meshes
is 352. The side and the height of the triangular prism are
0.25 cm and 0.50 cm respectively. The number of
unknowns (nodes) is 1429. The number of SN iterations
is 22, 23, 25 and 27 for the order of fully symmetric quad-
rature set is 2, 4, 6 and 8.

From Table 5 we can see that the result is unacceptant
using S2 fully symmetric quadrature set. This is because
the precision of S2 fully symmetric quadrature set is the
lowest used in the case of anisotropic scattering. But the
relative difference is only 0.024% using the S6 fully symmet-
ric quadrature set. And the relative difference of S8 result
decreases to 0.018% compared with the reference result
using the S16.
The eigenvalue for ISSA anisotropic scattering problem

Sn S2 S4 S6 S8 S16

Reference – – 1.6772 – 1.6784
LESFES 2.1531 1.6738 1.6776 1.6781 –
Pn P1 P3 P5 – –
FELTRAN 1.6451 1.6751 1.6771 – –



Table 6
The cross-section for problem with a void region

Group mRf=cm�1 R1�1=cm�1 R1�2=cm�1 Rt=cm�1 v

1 6.203E�3 1.78E�1 1.002E�2 1.96647E�1 1.0

mRf=cm�1 R2�1=cm�1 R2�2=cm�1 Rf=cm�1

2 1.101E�1 1.089E�3 5.255E�1 5.96159E�1 0.0

Fuel region

Void  region 

0.5 1.0 0.5

0.5

0.5

1.0

Fig. 1. The x–y plane geometry for problem with a void region.
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3.4. Problem with a void region

A problem with a void region was designed. It contains
a void region surrounded by fuel. The cross-section and the
x–y plane geometry are shown in Table 6 and Fig. 1.
Reflective boundary conditions are used at all outer bound-
aries. The overall dimensions are 2.0 · 2.0 · 1.0 cm. In the
calculation, the total cross-section of the void region is set
zero. The number of the meshes is 288. The side and the
height of the triangular prism are 0.25 cm and 0.50 cm
respectively. The number of unknowns (nodes) is 1141.
The number of SN iterations is 59, 62 and 64 for the order
of fully symmetric quadrature set is 4, 6 and 8.

The LESFES results are compared with the results of
the MG-MCNP3B codes in Table 7. In the MG-MCNP3B
calculation, the nominal source size for each cycle is 30000.
The number of cycles to skip before beginning tally accu-
mulation is 30. The number of cycles to be done before
the problem ends is 100. Compared with the MG-
MCNP3B results, the maximum error is about 0.08% for
the LESFES flux using the S4 fully quadrature set and
the error decreases when used a higher quadrature set,
which is 0.06% for the S8 set. Meanwhile, for the eigen-
value the difference decreases from 0.06% to 0.04%.
Table 7
Average scalar fluxes for fuel region and eigenvalues for problem with a
void region

Code Group 1 Group 2 Keff

MG-MCNP3B 9.01330 1.27853 1.17988
LESFES (S4) 9.00748 1.27751 1.17917
LESFES (S6) 9.00887 1.27766 1.17929
LESFES (S8) 9.00911 1.27767 1.17935
4. Conclusion

A discrete ordinates finite-element method based on the
three-dimensional first-order neutron transport equation is
derived using the least-squares variation and also the sim-
ulation code is developed. The multi-group neutron trans-
port equation for the unstructured geometry with a severe
anisotropic scattering was solved with a good accuracy.
Although the S2 fully symmetric quadrature set were used
in the small LWR and FBR benchmark, the results were in
agreement with the reference. The ISSA anisotropic scat-
tering problem indicated that the calculated results were
quite close to the reference results. The code developed in
this paper could also treat problem with void regions.
Overall it has been demonstrated that the least-squares
finite-element method used in the first-order transport
equation could handle the multi-group anisotropic or iso-
tropic scattering problems with unstructured geometry
successfully.
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