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a b s t r a c t

The method of characteristics (MOC) is a very flexible and effective method for the neutron transport cal-
culation in a complex geometry. It has been well developed in two-dimensional geometries but meets
serious difficulty in three-dimensional geometries because of the requirements of large computer mem-
ory and long computational time. Due to the demand related to the advanced reactor design for complex
geometries, an efficient and flexible three-dimensional MOC is needed. This paper presents a modular ray
tracing technique to reduce the amount of the ray tracing data and consequently reduce the memory. In
this method, the object geometry is dissected into many cuboid cells by a background mesh. Typical geo-
metric cells are picked out and ray traced, and only the ray tracing data in these typical cells is stored.
Furthermore, the Coarse Mesh Finite Difference (CMFD) acceleration method is employed to save com-
puting time. Numerical results demonstrate that the modular ray tracing technique can significantly
reduce the amount of ray tracing data, and the CMFD acceleration is effective in shorting the computing
time.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The method of characteristics (MOC) is an effective tool for the
neutron transport calculations. It considers only a finite number of
discrete directions (with quadrature sets) and calculates mesh-
average angular flux by sweeping. For a given direction, each of
several parallel rays is traced to provide mesh-average ray angular
flux and outgoing ray angular flux by analytic integration along the
tracing ray. The ray-wise integration allows flexibility of the mesh
shapes. It can take any shape and mixture of shapes as in Monte-
Carlo methods (Cho, 2005).

The MOC has been extensively developed for 2D transport prob-
lems. The earliest code of the MOC for complex 2D geometries was
developed by Askew (1972), and the first reactor analysis code
with the MOC was CACTUS developed in (Halsall, 1980). However
the MOC was not widely used at that time because of the high
memory requirements and slow processor speeds. In the 1990s,
the MOC became popular again for the quick development of com-
puter technology and the need to deal with complex geometries.
And a lot of codes based on the MOC were developed, such as
ll rights reserved.

: +86 29 82667802.
KRAM (Knott, 1990), CHAR (Goldberg et al., 1995), CRX (Hong
and Cho, 1998), MOCC (Roy, 1998), and DECART (Cho et al., 2002).

As the development of nuclear engineering, especially the reach
of the next generation fission reactors and fusion reactors is popu-
lar around the world, the geometries of new reactors become more
and more complicated, such as the High Temperature Gas-cooled
Reactor (HTGR) and the International Thermonuclear Experimental
Reactor (ITER). To get the reliable and precise results, three-dimen-
sional transport calculations are needed. The 3D MOC is a very
good choice due to its geometric flexibility.

However, direct MOC calculations for three-dimension problems
require a tremendous amount of memory (Chai et al., 2009) and
very long computing time. As one solution, a 2D + 1D strategy is pro-
posed, which combines 2D MOC for the radial calculation and 1D
calculation in the axial direction. This method performs well when
the geometry keeps the same in the axial direction (Lee and Cho,
2006). But it is not easy to apply it to the problems with unstruc-
tured axial geometry, such as the Test Blanket Module (TBM) of
the International Thermonuclear Experimental Reactor (ITER).

Therefore, a 3D modular ray tracing technique is adopted,
which can not only hold the geometry flexibility of the MOC but
also reduce the tremendous memory requirement. It is an exten-
sion of the 2D modular ray tracing technique firstly proposed by
Filippone et al. (1981) and widely used in 2D MOC codes (CRX,
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DECART, et al.). For the modular ray tracing technique, the object
geometry is dissected into many cuboid cells by a background
mesh. Typical geometric cells are picked out and ray traced. Only
in these typical cells, the ray tracing data is stored. It thus needs
much less memory, nerveless faces two difficulties. (1) The posi-
tions of tracing lines should be the same in all typical cells. (2)
The tracing lines must connect at the interface.

For three-dimensional transport methods, there are several
kinds of angular quadrature sets, such as level symmetric angular
quadrature sets. The angles of these quadrature sets are all calcu-
lated by given formulas. However, the angles obtained in modular
ray tracing technique do not conform to them, so new angular
quadrature sets are also derived.

The Coarse Mesh Finite Difference (CMFD) acceleration
method is popular in the fast solution of nodal diffusion equa-
tions (Turinsky et al., 1994; Smith, 1983), and widely used to
accelerate the transport calculations with very good results (Smith
and Rhodes, 2000). To reduce the long computing time, the
CMFD is employed to acceleration the 3D MOC calculation. The
results of the CMFD for 3D MOC also demonstrate that it is
very effective in reducing the number of iterations and computing
time.

In Section 2, we review the MOC. The detailed 3D modular tech-
nique and angular quadrature sets are introduced respectively in
Sections 3 and 4. Section 5 presents the CMFD acceleration meth-
od. In Section 6, some numerical problems are tested. Finally, we
summarize and discuss our results in Section 7.
2. Step characteristics

The Boltzmann transport equation describing the neutron
transport behavior can be written in the following form along
the path, namely the characteristics.

d/g s; X
!

m

� �
ds

þ Rt;gðsÞ/g s; X
!

m
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Fig. 1. Modular ray
After the domain is divided into some sub-domains and both
the material and the neutron source are assumed to be flat, the
outgoing angular flux from sub-domain i along the path k can be
given by
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where si,k is the traveling distance in the sub-domain i of the path k;
and /in

g;i;k X
!

m

� �
is the incoming angular flux.

The average angular flux of the segment i, k /g;i;k X
!
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obtained by integrating the Eq. (3) along the path k:
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The sub-domain average angular flux /g;i X
!

m

� �
is given by:
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In addition, the traveling distance should be corrected since the
numerically calculated volume

P
ksi;kdAk is not equal to the true vol-

ume Vi:

s0i;k ¼ si;k
ViP

ksi;kdAk
: ð6Þ
3. Modular ray tracing technique

The scheme of the 3D modular ray tracing technique for the
MOC is shown in Fig. 1.

The modular ray tracing technique consists of two main parts:
modularization and ray tracing. Modularization consists of steps
1–4 in Fig. 1. The object geometry is dissected into many cuboid
cells by a background mesh. However, most of them are usually
the same, so only the typical cells are considered. And the object
geometry can be arrayed by these typical cells (see step 6) again.
This part can be realized by commercial modeling software, such
as AutoCAD (Chen et al., 2008).
1      2       3       4 

d mesh 
3. All cuboid cells 

4. Typical cuboid cells 

tracing process.
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The second part is the 3D ray tracing (step 5). It is the key point
of the modular ray tracing technique, which make sure that the
segments will connect at interface between different typical cells.
The following are the details of the 3D ray tracing process in direc-
tion X

!
ðu; hÞ for a typical cell.

3D modular ray tracing also contains two steps, dealing with
the azimuthal angle and polar angle respectively.

The azimuthal angle is constrained by the requirement of mod-
ular ray tracing. The following relation is proposed by Filippone et
al. (1981).

tanðuÞ ¼ ðDy=DxÞ nx
ny
; ð7Þ

and

du ¼
Dx
nx

sinðuÞ ¼ Dy
ny

cosðuÞ; ð8Þ

where Dx is the length of classical cell in x direction; Dy is the
length in y direction; nx is the number of points in x direction; ny
is the number of points in y direction.

We extend this idea to deal with the polar angle. So the solid
slope lines in Fig. 2 are no longer the segments, but the cutaway
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Fig. 2. Schematic diagram of step 1.
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Fig. 4. Treatment of the int
sections perpendicular to the x–y plane. The sections are arrayed
by order (see Fig. 3).

With the same options, we will get the solid slope lines in Fig. 3.
It will lead to a modular ray tracing system with self-repeating ray
distributions and returning to the same starting point after reflec-
tion. This makes 3D whole-core ray tracing possible without any
approximation on the interfaces between cells (see Fig. 4) and
reflective boundary faces (see Fig. 5).

Similar to step 1, the polar angle can be obtained by:

Dlu ¼
X

k

sk; ð9Þ

tanðh0Þ ¼ ðDz=DluÞ
nu

nz
; ð10Þ

h ¼ p
2
� h0; ð11Þ

and

dh ¼
Dlu
nu

sinðh0Þ ¼ Dz
nz

cosðh0Þ; ð12Þ

where Dl/ is the sum length of the faces in the azimuthal angle
direction; sk is the length of the solid slope segments in Fig. 2; Dz
is the size of the classical cell in z direction; nz is the number of
the points on Dz; n/ is the number of points on Dl/.

Then, the cross-sectional area of the direction X
!ðu; hÞ is thus gi-

ven by:

dA X
!� �
¼ dudh: ð13Þ
4. Angular quadrature sets

Now, for 3D problems, there are several kinds of angular quad-
rature sets, such as level symmetric angular quadrature sets. The
angles of these quadrature sets are all calculated by given formu-
las, but the angles obtained by Eqs. (7), (10), and (11) do not
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Fig. 5. Treatment of the reflective boundary faces.
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conform to them. So we derive new relations to calculate the
weight of directions.

The direction X
!ðu; hÞ is obtained by Eqs. (7), (10), and (11); M is

the number the directions in one octant; N has the same meaning
of SN order, and the relation between M and N is (see Fig. 6):

M ¼ ðN=2ÞðN=2þ 1Þ
2

: ð14Þ

Because Y2m
2n ðu; hÞ : n ¼ 0;1; . . . ; m ¼ 0;1 . . . ;n

n o
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orthogonal system in the space [/ e [0, p/2], h e [0, p/2]], it can
be used to expand the functions defined in space [/ e [0,
p/2], h e [0, p/2]].

Assuming function f(/, h) is defined in [/ e [0, p/2], h e [0, p/
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With the integral in the domain of definition written in the form
of numerical integration:Z p=2
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0
f ðh;uÞ sin h dh du ¼

X
k
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Substituting Eq. (15) into Eq. (16), and making the both sides of
the equation identical, it will deriveZ p=2

0

Z p=2

0
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When the direction discrete order is N, the formula to calculate
the weight of directions is:

XM
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Fig. 6. Angular quadrature set in the MOC.
This new method can calculate the weight of arbitrary direc-
tions if the sum number of directions in one octant satisfies Eq.
(14). The numerical results of the test problems in Section 6 prove
this new method right.

5. Coarse Mesh Finite Difference (CMFD) acceleration

In the CMFD method, a current correction coefficient is
introduced to preserve the interface currents between coarse
mesh cells, which are got from the solutions of transport
sweep.

The coarse mesh cell homogenized multi-group constants can
be calculated from the heterogeneous regional cross sections and
scalar fluxes:

Rx;g;ði;j;kÞ ¼
P

l2ði;j;kÞVlRx;g;l/
n
g;l

/n
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where /n
g;l is the scalar flux of region l that is determined from the

MOC transport calculation.
The current correction coefficient is obtained from the interface

current and coarse mesh flux.

D̂g;uþ1=2 ¼
Jn

g;uþ1=2 þ ~Dg;uþ1=2 /n
g;uþ1 � /n

g;u

� �
/n

g;uþ1 þ /n
g;u

ðu ¼ x; y; zÞ; ð21Þ

where

Jn
g;uþ1=2 ¼

P
mwmXmun

m;g;uþ1=2

8
; ð22Þ

~Dg;uþ1=2 ¼ 2
ðDg;uþ1=2=huÞðDg;uþ1=2=huþ1Þ
Dg;uþ1=2=hu þ Dg;uþ1=2=huþ1

: ð23Þ

Here ~Dg;uþ1=2 is the nodal coupling coefficient determined by the
coarse mesh cell homogenized diffusion constant: Dg;u ¼ 1

3Rt;g;u
,

Jn
g;uþ1=2 is the coarse mesh cell interface average current.

The CMFD equation for coarse mesh cell (i, j, k) is
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If the vacuum boundary condition is given on u + 1/2, and
reflective boundary condition on u � 1/2, the coarse mesh surface
currents can be replaced by:
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Jnþ1=2
g;uþ1=2 ¼

/nþ1=2
g;ði;j;kÞ

/n
g;ði;j;kÞ

Jn
g;uþ1=2; ð25Þ
Jnþ1=2
g;u�1=2 ¼ 0: ð26Þ

After the CMFD calculation, the coarse mesh cell average scalar
fluxes are obtained. Since the subsequent MOC transport calcula-
tion requires updated regional scalar fluxes and boundary incom-
ing angular fluxes from the CMFD calculation, the regional scalar
fluxes and boundary angular fluxes are updated by:

/nþ1=2
g;l ¼

/nþ1=2
g;ði;j;kÞ

/n
g;ði;j;kÞ

/n
g;l; ð27Þ
Fig. 7. 2D cell problem-geometry description.

Table 2
2D cell problem-cross section data.

Region Group m
P

f/cm�1 P
1–1/cm�1 P

1–2/cm�1 P
t/cm�1 v
unþ1=2
g;m ¼

/nþ1=2
g;ði;j;kÞ

/n
g;ði;j;kÞ

un
g;m; ð28Þ

where n is the iteration index.
1 1 6.203E�3 1.780E�1 1.002E�2 1.96647E�1 1.0
2 1.101E�1 1.089E�3 5.255E�1 5.96159E�1 0.0

2 1 0.0 1.995E�1 2.188E�2 2.22064E�1 –
2 0.0 1.558E�3 8.783E�1 8.87874E�1 –

Table 3
2D cell problem-comparison of k-infinity.

Code k-effective Difference (%)

Monte-Carlo 1.03815 ± 0.00026 –
3D MMOC 1.03741 �0.07
6. Numerical results

Based on the 3D modular characteristics method described
above, a code 3D MMOC is developed. In this section, three test
problems are presented. The first two problems are 2D/3D super-
cell problems, and the third is a KUCA core benchmark. They are
presented to show that, as the increase of dimension and size,
the storage save tends to be more significant. The speedup of the
CMFD acceleration is also listed in tables. In the test calculations,
the directions are selected similar to S8, and the corresponding
angular quadrature set is listed in Table 1.
Table 4
2D cell problem-region-averaged scalar flux.

Method Core Reflector

Monte-Carlo 1G 8.25E�01a 7.15E�01
0.0003 0.0003

2G 5.21E�01 6.37E�01
0.0003 0.0003

3D MMOC 1G 8.17E�01 7.14E�01
�0.96% �0.15%

2G 5.22E�01 6.11E�01
0.85% �0.64%

a Normalized by
R

v
P

f/dV = 1.
6.1. The accuracy and storage of 3D MOC calculations

6.1.1. 2D cell problem
This is a 2D super-cell problem. It contains two materials, and

reflective boundary conditions are applied in all side. The central
homogenized fuel region is surrounded by water moderator as pre-
sented in Fig. 7. The 2-group cross section set and energy group
structure is listed in Table 2.

The reference solution is given by MCNP. Table 3 shows the
comparison of k-infinity between 3D MMOC and MCNP, and 3D
MMOC performs well. Table 4 presents the region-averaged scalar
flux distribution, and the differences are all less than 1%.

In this problem, there is only one typical cell. The storage of ray
tracing data is 499 kB, when N = 8, dA = 2.6E�3 cm2, and the size of
the cell is 0.5 cm. If we do the global ray tracing with the same con-
dition, it will cost more than 250 (16 � 16) times storage than the
first case (see Table 5).
Table 1
S8 angular quadrature set.

/ h w

1 1.3521 1.3572 1.170E�01
2 0.9420 1.3537 9.219E�02
3 0.6288 1.3537 9.219E�02
4 0.2187 1.3572 1.170E�01
5 1.3102 0.9543 9.145E�02
6 0.7854 0.9553 1.000E�01
7 0.2606 0.9543 9.145E�02
8 1.2120 0.6604 9.081E�02
9 0.3588 0.6604 9.081E�02

10 0.7854 0.3045 1.170E�01
6.1.2. 3D cell problem
It is a 3D cell problem, containing two materials. Reflective

boundary conditions are considered in all sides. The fuel region is
in the center of water moderator as presented in Fig. 8. The size
of fuel region is 4 cm, and the size of moderator is 6 cm. The
2-group cross section set of the materials is listed in Table 2.

Table 6 gives the comparison of k-infinity of 3D MMOC with
MCNP, and 3D MMOC presents satisfied accuracy. Table 7 shows
the scalar flux distribution of every material region. The biggest
difference is �0.90%.
Table 5
2D cell problem-comparison of the storage.

Case Storage Ratio

Global ray tracing 120 MB 250
Modular ray tracing 499 KB 1



Fig. 8. 3D cell problem-geometry description.

Table 6
3D cell problem-comparison of k-infinity.

Code k-effective Difference (%)

Monte-Carlo 1.11707 ± 0.00027 –
3D MMOC 1.114721 0.21

Table 8
3D cell problem-comparison of the storage.

Case Storage Ratio

Global ray tracing 862 MB 1728
Modular ray tracing 499 KB 1
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The results in Tables 6–8 are got with the condition that N = 8,
dA = 2.6E�3 cm2, and the size of the sub-domain is 0.5 cm. The
storage of ray tracing data is 500 kB. If the global ray tracing is
done with the same condition, the storage will be about 1728
(12 � 12 � 12) times larger the modular case.
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Fig. 9. KUCA core benchmark-core configuration.
6.1.3. KUCA core benchmark
This benchmark was published by Takeda and Ikeda (1991). It

describes the core model of the Kyoto University Critical Assembly
(KUCA). The size of the whole reactor core is 50 cm � 50 cm �
50 cm, with three material regions: core fuel, control rod, and
reflector. Fig. 9 shows the core configuration. The 2-group cross
section set and energy group structure used in calculation are gi-
ven in Table 9. The following two cases are considered:

Case 1: The control rod position is empty (void).
Case 2: The control rod is inserted.

When calculated, the mesh size is 1 cm � 1 cm � 1 cm. Table 10
gives the mean values and standard deviations of k-effective and
control rod worth, and the reference value is got form the TAKEDA
benchmark published in 1991. The control rod worth is calculated
by (k � k0)/(kk0). The results of the MOC is calculated with the con-
dition that: N = 8, dA = 0.01 cm2. Though the k-effective results of
the MOC are smaller than the reference values, the control rod
worth agrees very well with the Monte-Carlo result. The region-
averaged scalar flux distribution is listed in Table 11. In this prob-
lem, the biggest difference is more than �7.38%. It is because that
the fine-mesh size is 1 cm, almost as long as the mean free path.
From the results of 2D/3D cell problems, we can find that if the cell
size is less than 1/2 of the mean free path, the flux difference would
be much better.
Table 7
3D cell problem-region-averaged scalar flux.

Method Core Reflector

Monte-Carlo 1G 2.15E�01a 1.99E�01
0.0003 0.0003

2G 1.30E�01 1.46E�01
0.0003 0.0003

3D MMOC 1G 2.13E�01 1.99E�01
�0.90% 0.15%

2G 1.30E�01 1.45E�01
0.08% �0.44%

a Normalized by
R

v
P

f/dV = 1.
Table 12 compares the storage of the ray tracing data between
the global ray tracing case and modular ray tracing case, In the
KUCA benchmark, the geometry is discreted into 15,625
(25 � 25 � 25) cells, and every of these cells is the same. Compared
to the global ray tracing case, only the ray tracing data in one cell is
stored in the modular ray tracing case. So the storage needed will
be much more less. The storage of these three problems demon-
strates that modular ray tracing can significantly reduce the ray
tracing data when dealing with large repeated-geometry problems.
6.2. The performance of the CMFD acceleration

In this part, the test problems are the same with Section 6.1.
Because the k-effective and fluxes are almost the same with that
before using the CMFD acceleration, only the speedup of the CMFD
is listed. In the tables, the iterations denote the number of inner
iteration.



Table 9
KUCA core benchmark-two-group cross sections and energy group structure.

Region Group
P

f/cm�1 m
P

f/cm�1 P
1–1/cm�1 P

1–2/cm�1 v

Core fuel 1 2.23775E�1 9.09319E�3 1.92423E�1 2.28253E�2 1.0
2 1.03864E+0 2.90183E�1 0.0 8.80439E�1

Control rod 1 8.52325E�2 0.0 6.77241E�2 6.45461E�5 –
2 2.17460E�1 0.0 0.0 3.52358E�2

Reflector 1 2.50367E�1 0.0 1.93446E�1 5.65042E�2 –
2 1.64482E+0 0.0 0.0 1.62452 E+0

Empty (void) 1 1.28407E�2 0.0 1.27700E�2 2.40997E�5 –
2 1.20676E�2 0.0 0.0 1.07387E�2

Table 10
KUCA core benchmark-average k-effective and control rod worth.

Method Rod-out Rod-in Control rod worth

Monte-Carlo 0.9778 0.9624 1.64E�2
±0.0005 ±0.0005 ±0.07E�2

3D MMOC 0.9764 0.9609 1.65E�2
(�0.143%) (�0.156%) (0.6%)

Table 11
KUCA core benchmark-region-averaged scalar flux-rod out.

Method Core Reflector Void

Monte-Carlo 1G 4.78E�03 5.97E�04 1.45E�03
0.06% 0.08% 0.21%

2G 8.78E�04 9.20E�04 9.77E�04
0.08% 0.11% 0.34%

3D MMOC 1G 4.74E�03a 5.98E�04 1.45E�03
�0.84% 0.09% 0.25%

2G 8.73E�04 8.52E�04 9.34E�04
�0.62% �7.38% �4.38%

a Normalized by
R

v
P

f/dV = 1.

Table 12
KUCA core benchmark-comparison of the storage.

Case Storage Ratio

Global ray tracing 8437.5 MB 15,625
Modular ray tracing 540 KB 1

Table 13
2D cell problem-results of the CMFD acceleration.

Acceleration Iterations Computing times (s) a Speedup

No 399 78.200 –
CMFD 21 4.78 16.4

a On Core2 2.66-GHz machine.

Table 14
3D cell problem-results of the CMFD acceleration.

Acceleration Iterations Computing times (s)a Speedup

No 360 444.49 –
CMFD 26 34.81 12.7

a On Core2 2.66-GHz machine.

Table 15
KUCA core benchmark-results of the CMFD acceleration.

Benchmark
case

Acceleration Iterations Computing times
(s)a

Speedup

Rod-out No 433 4881 –
CMFD 63 868 5.6

Rod-in No 445 5081 –
CMFD 44 603 8.4

a On Core2 2.66-GHz machine.
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6.2.1. 2D cell problem
The problem consists of 4 � 4 coarse mesh cells, in which one

coarse mesh cell contains 4 � 4 fine mesh cells. Table 13 shows
the results of calculations, and it indicates that the CMFD is effec-
tive to accelerate the MOC in terms of the number of iterations and
computing times.
6.2.2. 3D cell problem
This problem has 4 � 4 � 4 coarse mesh cells, and a coarse

mesh cell contains 3 � 3 � 3 fine mesh cells. Table 14 shows the
results of the CMFD. In both 2D and 3D cell problems the speedup
is more than 10.
6.2.3. KUCA core benchmark
In the acceleration calculation, there are 25 � 25 � 25 coarse

mesh cells, and a coarse mesh cell contains one fine mesh cell.
For the rod-out case, the time speedup is 5.6 while the speedup
of the rod-in case is 8.4 (see Table 15). It is because that, when con-
trol rod is inserted, the flux distribution is flatter than that of rod-
out case. And the CMFD will be more efficient. It is also the reason
why the speedup of the first two problems is larger than that of the
KUCA benchmark.
7. Conclusions

A 3D modular ray tracing technique is proposed in this paper.
On one hand, compared with global ray tracing, the ray tracing
data storages required by this modular technique are only 1/250
and 1/1000 in the 2D/3D test cell problems respectively. And in
the KUCA benchmark, the ratio is up to 15,625. Therefore, this ef-
fect tends to be more significant while the problem scale increases,
because of the appearance of more repetitious cells. On the other
hand, this modular technique can avoid approximations on the
interfaces and outer boundaries.

Since the present quadrature sets can not conform to the dis-
crete angles in this modular ray tracing technique, a series of
new angular quadrature sets are derived mathematically and com-
puted numerically. The derivation process and numerical results
show that it can provide correct quadrature sets of any order
needed by the modular ray tracing technique.

To reduce the computing time, the CMFD acceleration method
is implemented in 3D MOC calculations, and the results showed
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that it is very effective in reducing the number of iterations and
computing time.

In the future, we will focus on the secondary development
based on AutoCAD to improve the capability of modeling compli-
cated geometry.
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