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The wavelets expansion method is widely used in various fields due to its powerful ability to simulate the
oscillating functions. This method is applied to discretize the energy variable of neutron angular flux
within the resonant energy range. Meanwhile, the conventional multi-group method is applied in fast
and thermal energy ranges. This coupled method can obtain the problem-dependent continuous-energy
neutron flux spectrum within the resonant energy range. The method of characteristics (MOC) is
employed as a space-variable solver in this paper to keep the powerful capability of dealing with the
complex geometry problems. A pressurized water reactor (PWR) fuel cell problem with UO2 fuel
(UOX) and mixed oxide fuel (MOX), and a cylindrical cluster fuel problem are calculated by utilizing this
coupled method. Results of these problems are all in good agreement with the results of the Monte Carlo
statistical transport code MCNP. It is concluded that this is a valuable method to solve the resonance self-
shielding calculation problems in a complex geometry, and it is promising to be applicable for realistic
reactor problems.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Resonance self-shielding calculation is very important in reac-
tor physics. In recent decades, many resonance self-shielding cal-
culation methods have been developed, such as the Stamm’ler
method and generalization of the Stamm’ler method (Hébert,
2007; Reuss and Coste-Delclaux, 2003). They are based on the
equivalence theory between heterogeneous and homogeneous
problems (Hébert and Marleau, 1991). The key process of these
methods is calculating the fuel-to-fuel collision probability (CP).
They are difficult to be extended to the complex geometry prob-
lems, although the generalization of the Stamm’ler method can
solve complex geometry problems theoretically by the three-term
rational approximation for CP. The Stamm’ler method has been
used in lattice codes such as WIMS-AECL (Donnelly, 1986). The
generalization of Stamm’ler method has been used in the code
DRAGON (Marleau et al., 2000). For solving more complex geom-
etry problems, the sub-group method (Nikolaev et al., 1970;
Hébert, 2007; Reuss and Coste-Delclaux, 2003) discretizing the to-
tal cross-section instead of energy variable within the resonant
energy range was developed. However, because the resonance
parameters are processed under only single resonant nuclide
ll rights reserved.
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assumption, it has to calculate iteratively for multi-actinide
problems. In recent years, although the sub-group method had
been improved by increasing the sub-groups for this problem
(Hébert, 2004; Coste-Delclaux, 2009), it is still a problem for res-
onance self-shielding calculation for MOX fuel, transmutation
problems, etc., which contain multiple resonant nuclides. The
number of sub-groups will be increased exponentially with the
type of the resonant isotope. Therefore, the calculation efficiency
will be reduced remarkably. This method has been utilized in
the new versions of code CASMO (Knott et al., 1995), APOLLO2
(Sanchez et al., 1990) and HELIOS (Giust et al., 2001).

The advanced fuel design may be very complex and heteroge-
neous, and may contain various resonant nuclides, such as the
application of MOX fuel and transmutation of minor actinides.
The resonant nuclides will introduce very complicated resonance
interference effects between these nuclides. Therefore hyper-fine
energy group resonance calculation method (Tsuchihashi et al.,
1983) and continuous-energy resonance calculation method (Wil-
liams and Asgari, 1995; Zhong et al., 2006) were developed. The
hyper-fine energy group method divides the energy variable into
tens of thousands of groups. The continuous-energy resonance cal-
culation method applies a combination of multi-group and point-
wise (PW) nuclear data. They all have the capability of obtaining
the fine-structure energy distribution of the angular flux within
the resonant energy range. However, the fine-structure neutron
flux spectrum is obtained by interpolation of hyper-fine group
fluxes or point-wise fluxes. Therefore, the spectrums obtained by
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these methods are not rigid continuous-energy flux spectrums. The
hyper-fine energy group method and the continuous-energy reso-
nance calculation method (PW resonance calculation method)
have been implemented in the codes SRAC (Tsuchihashi et al.,
1983) and SCALE5 (1990), respectively.

The theory of wavelets was developed by many researchers at
the end of 1980s. It has several charming properties including local-
ization property, local adaptability property and non-linear smooth-
ing property, etc. Especially, the localization property makes it very
powerful for simulating the function with severe oscillation. Be-
cause of these powerful properties, it has been well developed and
widely applied in data compression, turbulence analysis, imaging
and signal processing, etc. (Newland, 1993). In 1990s, it was applied
to solve neutron diffusion equation by the wavelet Galerkin method
(WGM) (Cho and Park, 1996). Recently, it was applied to solve the
neutron transport problems in which the angular flux distributions
along the azimuthal direction are fascinatingly complicated. Precise
keff results and fine-structure angular distribution of the flux are
obtained successfully (Buchan et al., 2008; Cao et al., 2008).

The neutron flux oscillates very violently within the resonant
energy range because of the fierce oscillation of the total cross-sec-
tion of resonant nuclides. According to this characteristic and the
powerful properties of wavelets analysis, this paper introduces a
new continuous-energy resonance calculation idea based on the
wavelets scaling function expansion method. In this method, the
energy variable of neutron angular flux is discretized by coupling
the multi-group method and wavelets scaling function expansion
method. Multi-group treatment is used within non-resonant en-
ergy ranges where the distributions of the fluxes are smooth, Con-
currently, Daubechies’ wavelets scaling function is employed to
expand the energy variable of neutron angular flux within the res-
onant energy range.

More recently, Le Tellier et al. (2009) published their work with
very similar idea with our work, even though we did our work inde-
pendently. They expanded the resonant energy variable with wave-
lets function raised by Farras Abdelnour and Selesnick (2001). In
our work, the wavelets scaling function, instead of the wavelets
function, is employed to expand the energy variable of neutron
angular flux. This difference will be explained in detail in the fol-
lowing section. Furthermore, in their work, only the homogeneous,
single resonant nuclide problem is calculated under Livolant–
Jeampierre hypotheses, the treatment of coupling relationship be-
tween the resonant energy range and non-resonant energy range
is not considered. Besides, much effort of our work is dedicated to
evaluating the accuracy of this method by numerical validation.

This paper is organized as follows. In Section 2, the fundamental
properties of the wavelets scaling function and the theoretical
model of the method are described. In Section 3, four testing prob-
lems are calculated and discussed. Finally, Section 4 provides the
conclusions of this work.
2. Theoretical model

2.1. Basics of wavelets theory

The functions named ‘wavelets’ are translated and dilated from
a single function (Cho and Park, 1996). They are defined by a dila-
tion and translation operation as:

wn;kðxÞ ¼ 2n=2wð2nx� kÞ; w 2 L2ðRÞ; n; k 2 Z ð1Þ

The scaling function is the generator of wavelet function. It has
the same form as:

un;kðxÞ ¼ 2n=2uð2nx� kÞ; u 2 L2ðRÞ; n; k 2 Z ð2Þ
here n is the ‘dilation order’. Z and R denote the set of integers and
real numbers, respectively.

L2(R) denotes the space of measurable, square – integrable
functions.

Suppose we define

Vn ¼ spanhun;k : k 2 Zi ð3Þ

and

Wn ¼ spanhwn;k : k 2 Zi ð4Þ

Then the scaling functions and the wavelet functions have the
following sub-space relations:

. . . V�1 � V0 � V1 � V2 . . . ð5Þ
Vn ¼ Vn�1 �Wn�1 ð6Þ
[
n

Vn ¼ L2ðRÞ

and

�
n

Wn ¼ L2ðRÞ ð7Þ

where � stands for orthogonal summation.
From Eq. (6), we can obtain

Vn ¼ Vn�m �Wn�m � � � � �Wn�2 �Wn�1 ð8Þ

Based on Eqs. (6) and (7), wavelets decomposition at scale n
becomes:

f nðxÞ ¼
X

k

an;kun;kðxÞ

¼
X

k

an�m;kun�m;kðxÞ þ
Xn�1

j¼n�m

X
k

bn�m;kwj;nðxÞ ð9Þ

In Eq. (9), the expression expands function f at a single scale n,
while the second expression expands a multi-scale representation
of f at the scales fn�m; . . . ;n� 2;n� 1g:.

From Eqs. (5) and (7), sufficiently large values of n exist such
that ||f � fn|| is arbitrarily small for any f 2 L2:.

If we define that u 2 V0 and w 2W0; there are the following
two-scale relations from Eq. (6):

uðxÞ ¼
X

k

ckuð2x� kÞ

and

wðxÞ ¼
X

k

dkwð2n� kÞ: ð10Þ

The two-scale relations are applied for construction of the scal-
ing and wavelets functions. If w is required to generate orthonor-
mal basis, the coefficients ck and dk have the following relation:

dk ¼ ð�1Þkc1�k ð11Þ

In this paper, we apply the Daubechies’ wavelets, which are
constructed by Daubechies (2001). They are defined as a kind of
orthonormal and compactly supported wavelets in the following
form:

un;kðxÞ ¼
X2Nþ2k�1

j¼2k

cj�2kunþ1;jðxÞ ð12Þ

and

wn;kðxÞ ¼
X2k�1

j¼2k�2Nþ2

ð�1Þjc1�jþ2kunþ1;jðxÞ ð13Þ

where c represents the Daubechies’ coefficients and N is the Daube-
chies’ order, n is the dilation order, k and l are translation subscripts.
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They have many special and powerful properties (Cho and Park,
1996; Daubechies, 2001):

supportðun;kÞ ¼ ½2�nk;2�nðkþ2N�1Þ�
and supportðwn;kÞ ¼ ½2�nðkþ1�NÞ;2�nðkþNÞ� ð14Þ

un;k;wn;k 2 CkðNÞ

¼ the space of Holder continuous functions with exponentkðNÞ:
ð15ÞZ

wn;kðxÞxmdx

¼ 0 for all integer n;kand any integer 06m<N�1: ð16Þ
kf � f nk< Ckf ðNÞk2�Nn: ð17ÞZ

un;kðxÞdx¼ 1: ð18ÞZ
un;kðxÞun;lðxÞdx¼ dk;l;

and
Z

wn;kðxÞwm;lðxÞdx¼ dn;mdk;l: ð19Þ

Here dk,l is the Delta function.
Eq. (14) shows that the width of the support region of the wave-

lets and scaling function is related to the Daubechies’ order N and
the dilation order n. The larger the Daubechies’ order N is, the
wider of the supporting region of scaling function will be. It also
can be seen from Eq. (15) that the larger N is, the smoother the
scaling function will be. Fig. 1 gives examples of the scaling func-
tion whose Daubechies’ orders are N = 3 (Fig. 1a) and N = 5
(Fig. 1b), respectively (dilation order n and k is set to be zero).
Eq. (17) comes from Strang’s work (1989), which states that
smooth functions can be approximated with error O(hN) by combi-
nations at every scale h = 2�n.

Eq. (18) denotes the weighing property of individual Daubechies’
scaling function in the decomposition. Eq. (19) represents the ortho-
normal property, which is important in obtaining the expansion mo-
ment equations in the decomposition. The weighing and
orthonormal properties can reduce the computing work when we
integrate the product of the scaling functions and the wavelets func-
tions. Daubechies (2001) pointed out other properties of the Daube-
chies’ scaling function. The method of construction of Daubechies’
wavelets scaling function was shown in the paper of Cho and Park
in detail.

2.2. Fundamental idea of wavelets scaling function expansion method

The fundamental idea of the method is to discretize the energy
variable of neutron angular flux by coupling the multi-group meth-
od and wavelets scaling function expansion method, which is
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Fig. 1. Distribution of Daube
shown in Fig. 2. The conventional multi-group method is utilized
in the non-resonant energy ranges. The resonant energy range is
divided into several resonant groups first. This division is the same
as the conventional multi-group method. The angular flux is ex-
panded with wavelets scaling function in each resonant energy
group.

The energy variable of the angular flux is discretized by wave-
lets scaling functions within each resonant group as:

Uð~r;E; ~XÞ ¼
X

l

ai;lð~r; ~XÞui;lðEÞ l ¼ 1;2; . . . ;p ð20Þ

Here i is the dilation order, N the Daubechies’ order, l translation
subscript, ai;lð~r; ~XÞ is the wavelets scaling function expansion mo-
ments. p = 2i + 2N � 2 is the total number of wavelets scaling func-
tions applied in single resonant group.

Then, we can obtain the fine-structure of neutron spectrum
using Eq. (11) if the expansion moments an;kð~r; ~XÞ are obtained.
The steady-state neutron transport equation is represented as:

~X � rUð~r; E; ~XÞ þ Rtð~r; EÞUð~r; E; ~XÞ

¼
Z 1

0

Z 4p

0
RSð~r; E0 ! E; ~X0 ! ~XÞUð~r; E0; ~X0Þd~X0dE0

þ vðEÞ
4pk

Z 1

0

Z 4p

0
mðE0ÞRf ð~r; E0ÞUð~r; E0; ~X0Þd~X0dE0

ð21Þ

here ~X is the neutron flight direction,~r is the space coordinate, E is
the energy, Rtð~r; EÞ is the macroscopic total cross-section,
RSð~r; E0 ! E; ~X0 ! ~XÞ is the double-differential scatter cross-section,
v(E) is the fission spectrum, m(E) is the number of neutron per fis-
sion, Rf ð~r; EÞ is the macroscopic fission cross-section.

Substituting Eq. (11) into Eq. (12), a set of equations about the
expansion moments by utilizing the orthogonality of Daubechies’
wavelets scaling function is obtained. Fortunately, the form of
expansion moment equations is similar with the neutron transport
equation. It is written as:

~X � rai;lð~r; ~XÞ þ
X

n

ai;nð~r; ~XÞAl;n ¼ Sl þ Fl l ¼ 1;2; . . . ;p ð22Þ

or B � a = Y.
Here, Bl;n ¼ dl;nð~X � rÞ þ

P
nAl;n is the element of the matrix,

a ¼ ðai;l;ai;2 . . . ai;p�1;ai;pÞT is the expansion coefficient matrix,
Y ¼ ðS1 þ F1; S2 þ F2; . . . ; SP�1 þ FP�1; SP þ FPÞT is the matrix of the
sources.

Define a matrix A ¼ ðAl;nÞ l 2 ½0;p�;n 2 ½0;p� ð23Þ
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Fig. 2. Scheme of the coupling method of wavelets scaling function expansion and multi-group treatment.
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The parameters of the equations Al,n, Sl and Fl are represented
as:

Al;n ¼
Z

DEg

Rtð~r; EÞui;lðEÞui;nðEÞdE ¼ An;l; ð24Þ

Sl ¼
Z

DEg

ui;lðEÞ
Z 1

0

Z 4p

0
RSð~r; E0 ! E; ~X0

! ~XÞUð~r; E0; ~X0Þd~X0dE0dE; ð25Þ

and

Fl ¼
1

4pk

Z
DEg

ui;lðEÞvðEÞ
Z 1

0

�
Z 4p

0
mðE0ÞRf ð~r; E0ÞUð~r; E0; ~X0Þd~X0dE0dE: ð26Þ

Moving the non-diagonal elements of the Eq. (22) to the right
side of the equation, the equation is changed to

~X � rai;lð~r; ~XÞ þ ai;lð~r; ~XÞAl;l ¼ Sl þ Fl �
X
n–l

ai;nð~r; ~XÞAl;n

l ¼ 1;2; � � � ;p ð27Þ

Thus, it can be calculated in the following iterative scheme:

~X � raj
i;lð~r; ~XÞ þ aj

i;lð~r; ~XÞAl;l ¼ Sj�1
l þ Fj�1

l �
X
n–l

aj�1
i;n ð~r�; ~XÞAl;n

l ¼ 1;2; . . . ;p ð28Þ

Here j is the iteration superscript.
After showing the method of the wavelets scaling function

expansion, we will describe the differences of this method and Le
Tellier’s scheme. In this method, the first expression of Eq. (9) is
utilized. The expansion is done in sub-space Vi. We know from
Eq. (24) that the parameter matrix A is symmetric. Also, the matrix
A is a band matrix because the Daubechies’ wavelets scaling func-
tion is a compactly supported function. The width of the matrix is
4N � 3, which is determined by the Daubechies’ order N. Usually,
the matrix is dominant diagonal. Therefore, the expansion coeffi-
cient equations shown in Eq. (22) are loosely coupled. The simple
iterative scheme shown in Eq. (28) is available, and the iterative
calculation of expansion coefficient equations will not noticeably
increase the calculation cost. While in the work of Le Tellier
et al., the second expression of Eq. (9) is applied, the expansion is
done in sub-space V0 þ

PJ
j¼0Wj . The expansion basis is combined

with u0;kðxÞ and wj,k(x), which makes the expansion coefficient
equations tightly coupled. Therefore, a modification method is ap-
plied to decouple the equations. In the work of Zheng et al. (2009),
they also applied wavelets scaling function instead of wavelets
function for the expansion basis to make the tightly coupled
expansion coefficient equations sparsely coupled. Numerical
results validate that it is good for improving the calculation effi-
ciency in the work of Zheng et al.

All of parameters Al,n, Sl and Fl can be calculated with the multi-
group and continuous-energy nuclear cross-section data. They are
therefore constants when we calculate Eq. (27). Because the form
of Eq. (27) is similar with standard multi-group neutron transport
equation, the existing methods to solve the neutron transport
equation can be utilized directly. In this paper, the method of char-
acteristics (MOC) (Askew, 1972; Chen et al., 2008) is applied to
solve the neutron transport and the expansion moment equations.
The MOC is capable of solving the complex geometry neutron
transport problems, because it solves the neutron transport equa-
tion along the characteristic lines. Therefore, the wavelets scaling
function expansion method introduced by this paper is capable
of solving the complex geometry problems. The expansion mo-
ment equations are derived from the steady-state neutron trans-
port equation, so the continuous-energy neutron flux within the
resonant energy range and the infinite multiplication factor (k-
inf) can be obtained directly. Meanwhile, the multi-group neutron
cross-sections within resonant energy range are processed by uti-
lizing the continuous-energy neutron flux as the weighing func-
tion. It is shown as:

Rg ¼
R

DEg
RðEÞUðEÞdER

DEg
UðEÞdE

¼
P

kan;k
R

DEg
un;kðEÞRðEÞdEP

kan;k
R

DEg
un;kðEÞdE

ð29Þ

As we know, the WIMS data library (Halsall, 1991) gives out the
values of effective resonant integral for several dilution cross-sec-
tions and different temperatures, and the results of effective reso-
nant integral are processed under the single resonant nuclide
assumption. In this case, the iterative calculation has to be utilized
for the multi-actinide resonant problems in conventional self-
shielding calculation method by assuming that other resonant nuc-
lides are non-resonant. However, in the wavelets scaling function
method the iterative calculation is unnecessary for multi-actinide
resonant problems because the continuous-energy nuclear cross-
section data and s-wave elastic scattering law are applied within
the resonant range.

From Eq. (22), we know that if we know the parameters Al,n, Sl

and Fl, we can calculate the equation iteratively applying the iter-
ative scheme shown in Eq. (28). The parameter Al,n can be com-
puted numerically. While for Sl and Fl, they have to be
represented with wavelets scaling expansion coefficients firstly.
Therefore, in the following two sections we will describe the treat-
ment of them in detail.

2.3. Scattering source calculation

The angular-dependence of the differential macroscopic scatter-
ing cross-section is represented by a finite Legendre expansion of
order L:
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RðE0 ! E;l0Þ ¼
XL

l¼0

2lþ 1
2

RlðE0 ! EÞPlðl0Þ ð30Þ

where L is the order of the Legendre expansion, l0 cosine of scatter
angle, measured in the laboratory coordinate system, Plðl0Þ the
Legendre polynomials evaluated at the laboratory scattering cosine,
and RlðE0 ! EÞ is the cross-section moment which is defined by the
expression:

RlðE0 ! EÞ ¼
Z 1

�1
RðE0 ! E; l0ÞPlðl0Þdl0 ð31Þ

Substituting the Legendre expansion for the scattering cross-
section and using spherical harmonic addition theorem (O’Dell
and Alcouffe, 1987), the scattering source is represented as:

Sð~r;E; ~XÞ ¼
Z 1

0

Z 4p

0
Rð~r;E0 ! E; ~X0 ! ~XÞUð~r;E0; ~X0Þd~X0dE0

¼
XLK

lk¼0

2lþ 1
2

Y lkð~XÞSlkð~r; EÞ ð32Þ

where Ylkð~XÞ are the spherical harmonic functions, and Slkð~r; EÞ are
spherical harmonic moments of the scattering source. They are
written as:

SlkðEÞ ¼
Z

E0
SlkðE0 ! EÞdE0

¼
Z

E0
RlðE0 ! EÞUlkðE0ÞdE0

ð33Þ

where Ulk(E) are the spherical harmonic moments of the angular
flux, which are defined as:

UlkðEÞ ¼
Z 4p

0
Ylkð~XÞUð~XÞd~X ð34Þ

The parameters SlkðE0 ! EÞ are the moments of the differential
scattering rate from energy E0–E, which are represented as:

SlkðE0 ! EÞ ¼ RlðE0 ! EÞUlkðE0Þ ð35Þ

Within the non-resonant energy range, calculation of the scat-
ter source is the same as multi-group method which is unneces-
sary to be iterated. However, within the resonant energy range,
there are two cases needed to be treated specifically. For the first
case the neutrons are scattered from fast neutron energy range,
the other case’s neutrons are scattered from resonant energy
range itself.

Similar to the WIMS data library, we suppose the resonant en-
ergy range is from 4 eV to 9118 eV. If the energy <10=A2=3 MeV
(A is the atomic mass number), the scattering will be elastic scat-
tering. Therefore, the scattering within resonant energy range is
elastic scattering, and the s-wave elastic scattering law (Bell and
Glasstone, 1970) can be applied for most of the nuclides. It is rep-
resented as:

f ð~r; E0 ! E;~X0 ! ~XÞ ¼
1

ð1�aÞE0 dð~X
0 � ~X� l0Þ;aE0 < E < E0

0; E < aE0; E > E0

(
ð36Þ

where a ¼ A�1
Aþ1

� �2
and l0 ¼ 1

2 ½ðAþ 1Þ
ffiffiffiffiffiffiffiffiffi
E=E0

p
� ðA� 1Þ

ffiffiffiffiffiffiffiffiffi
E0=E

p
�. d(x) de-

notes the Dirac-delta function.
For the first case where neutrons are scattered from the fast

neuron energy range, an energy-dependent intra-group distribu-
tion function yl(E) is introduced to the spherical harmonic mo-
ments of the scatter source. Then the moments of spherical
harmonic function expansion of scattering source are written as
(Williams and Asgari, 1995; Zhong et al., 2006):

SlkðEÞ ¼ Slk;g
ylðEÞR

DEg
ylðEÞdE

ð37Þ
Inserting the s-wave elastic scattering kernel in Eq. (36) into the
cross-section moments in Eq. (31), the cross-section moments
become

RlðE0 ! EÞ ¼ RðE0Þ
ð1� aÞE0

PlðGðE0; EÞÞ ð38Þ

Then the spherical harmonic function expansion moments of
scattering source are represented as:

SlkðEÞ ¼
Z

E0
SlkðE0 ! EÞdE0 ¼

Z
E0

RlðE0 ! EÞUlkðE0ÞdE0

¼
Z

E0

RðE0Þ
ð1� aÞE0

PlðGðE0; EÞÞUlkðE0ÞdE0 ð39Þ

From Eqs. (37) and (39), the P0 and P1 distribution functions of
elastic scattering source from hydrogen can be rigorously ex-
pressed as:

y0ðEÞ ¼ c; c > 0 ð40aÞ
y1ðEÞ ¼ E ð40bÞ

The higher moments of the hydrogen scatter source can be ne-
glected, because they are less important than the first two mo-
ments. For other nuclides, only the first order shown as Eq. (40a)
is applied in Williams and Asgari’s paper because obtaining the
higher order moments is very complicated, also the moments with
higher orders are less important. Finally the scattering source from
fast neutron energy region to resonant energy region from nuclide j
is represented as:

Sj
l;g;he ¼

Z
DEg

ui;lðEÞ
Z 1

0

Z 4p

0
Rj

Sð~r;E
0 ! E; ~X0 !XÞUð~r;E0; ~X0Þd~X0dE0dE

¼
Z

DEg

ui;lðEÞ
X

lk

2lþ 1
2

Y lkð~XÞSj
lkð~r;EÞdE

¼

P
lk

2lþ1
2 Y lkð~XÞSj

lk;g

R
DEg

ui;lðEÞylðEÞdER
DEg

ylðEÞdE
; j 2 H1

P
lk

2lþ1
2 Y lkð~XÞSj

lk;g

R
DEg

ui;lðEÞdE

DEg
; j – H1

8>>>><
>>>>:

ð41Þ

here DEg is energy region of the gth group, ‘he’ means the neutrons
of scattering source are scattered from the fast neutron energy
range.

Substituting Eqs. (32) and (39) into Eq. (25), the scattering
source from the g0th group to the gth group is obtained.

Sn;g0!g ¼
Z

DEg

ui;nðEÞ
XLK

lk¼0

2lþ1
2

Ylkð~X0ÞSlkðEÞdE

¼
XLK

lk¼0

2lþ1
2

Ylkð~X0Þ
Z

DEg

ui;nðEÞ
Z

DEg0

RðE0Þ
ð1�aÞE0

PlðGðE0;EÞÞUlkðE0ÞdE0dE

ð42Þ

here the g0th group and the gth group are all resonant groups.
Substituting the wavelets scaling function expansion of the flux

represented as Eq. (20) into Eq. (42) and taking l = 0 as an example,
the P0 scattering source scattering from the g0th group to the gth
group is represented as:

Sn;g0!g ¼
Z

DEg

ui;nðEÞ
Z

DEg0

Z 4p

0
R0ð~r;E0 ! E;~X0 ! ~XÞ�Uð~r;E0;~X0Þd~X0dE0dE

¼ 1
ð1�aÞ

Z
DEg

ui;nðEÞdE
X

m

Z
DEg0

RSðE0Þui;mðE
0Þ

E0
dE0
Z

4p
ai;mð~r;~X0Þd~X0

ð43Þ

The scattering source represented with wavelets scaling func-
tion expansion coefficients is finally obtained. Thus the scattering
source can be computed with the coefficients.
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2.4. Fission source calculation

In multi-group method the fission source (O’Dell and Alcouffe,
1987) can be expressed as:

Fg ¼
vg

4pk

X
g0

mRf ;g0 ð~rÞUg0 ð~rÞ ð44Þ

Using the wavelets scaling function expansion of flux within
resonant energy range, the total production of neutron in resonant
group g0 is written as:

Sf ;g0 ð~rÞ ¼
Z

DEg0

Z 4p

0
mðE0ÞRf ð~r; E0ÞUð~r; ~X0; E0ÞdE0d~X0

¼
X

n

Z 4p

0
ai;nð~r; ~X0Þd~X0

Z
DEg0

mðE0ÞRf ð~r; E0Þui;nðE
0ÞdE0

ð45Þ

Then the fission source within the non-resonant energy range
can be written as:

Fg ¼
vg

4pk

X
g0–RA

mRf ;g0 ð~rÞUg0 ð~rÞ þ
X
g02RA

Sf ;g0 ð~rÞ
" #

ð46Þ

where ‘RA’ means the resonant energy range.
Similarly, the fission sources within resonant energy range are

given as:

Fl;g ¼
Z

DEg

ui;lðEÞ
vðEÞ
4pk

Z 1

0

Z 4p

0
mðE0ÞRf ð~r; E0ÞUð~r; E0; ~X0Þd~X0dE0dE

¼ 1
4pk

Z
DEg

ui;lðEÞvðEÞdE

" # X
g0–RA

mRf ;g0 ð~rÞUg0 ð~rÞ þ
X

g0–RASf ;g0 ð~rÞ

2
4

3
5
ð47Þ

Thus, the fission source can be computed with the wavelets
scaling function expansion coefficients and the group fluxes of
non-resonant groups as shown in Eq. (47).

The Maxwell fission spectrum or the Watt fission spectrum is
used in the resonant energy range, which is shown in Table 1 in de-
tail. Briesmeister (2000) gives out fission spectrum constants of
other fissionable isotopes which are not presented in Table 1.
Meanwhile, the fission spectrum from the WIMS nuclear data li-
brary is utilized within the non-resonant energy range.

The Maxwell fission spectrum and the Watt fission spectrum
(Briesmeister, 2000) can be represented as following, respectively:

f ðEÞ ¼ C � E1=2 � expð�E=aÞ ð48Þ
f ðEÞ ¼ C � expð�E=aÞ � sinhðbEÞ1=2 ð49Þ

here C is the normalization constant.
Table 1
Parameters of fission spectrums utilized for different fissionable isotopes.

The Maxwell fission spectrum The Wa

Fissionable isotope Ein (MeV)a a (MeV) Fission

n + 238Pu Thermal 1.330 n + 232T
1 1.330
14 1.330

n + 240Pu Thermal 1.346 n + 235U
1 1.3615
14 1.547

n + 241Pu Thermal 1.3597 n + 238U
1 1.3752
14 1.5323

n + 242Pu Thermal 1.337 n + 239P
1 1.354
14 1.552

a Ein is the incident neutron energy.
3. Numerical results

A special MOC code is chosen as the angular and spatial
variable solver of multi-group neutron transport and wavelets
scaling function expansion coefficient equations in this work.
In this MOC code, AutoCAD is customized to carry out the ray
tracing procedure with a high flexibility in geometry. The
description of complex geometry becomes quite efficient and
convenient because of the powerful graphics capability of Auto-
CAD. The ray tracing procedure can be implemented uniformly
regardless of the geometry shape by using the language Visual
Basic for Applications (VBAs) to customize AutoCAD. Therefore,
this MOC code has powerful capability of solving complex
geometry problems. In the paper of Chen et al., the implemen-
tation and numerical validation of this kind of MOC are described
in detail.

In this paper, the multi-group nuclear data come from the
WIMS 69-group library based on jeff31 issued by IAEA. The reso-
nant groups are from the 15th group to the 27th group. The energy
division of groups in the resonant range is the same as multi-group
library. The continuous-energy nuclear data come from the
MCNP4C continuous-energy nuclear data library named endf602.
We know that the reason of the neutron flux oscillating very vio-
lently within the resonant energy range is the fierce oscillation of
the total cross-section of resonant nuclides in that energy range.
According to the MCNP4C continuous-energy nuclear data, the res-
onant groups with higher energy are close to the unresolved reso-
nant energy range, which contain more resonance peaks with
smaller heights compared to lower energy resonant groups. There-
fore, for different resonant groups, the orders of wavelets scaling
function expansion should be different. From Eq. (17), the larger
the dilation order n and the Daubechies’ order N are, the better re-
sults will be obtained. However, from Eq. (22), increasing n and N
will also increase the amount of the expansion coefficient equa-
tions, which will increase the calculation cost. Thus, it is an impor-
tant problem for selecting appropriate orders for different resonant
groups to obtain the balance between precision and calculation
efficiency.

3.1. Selecting orders of wavelets scaling expansion

The fierce oscillations of the neutron spectrum are due to the
peaks of the total cross-section of resonant nuclides. Therefore,
we can estimate the expansion orders of different resonant group
by applying wavelets scaling function expansion for simulating
the total cross-section. The total cross-section of resonant nuclide
is expanded with wavelets scaling function like this:
tt fission spectrum

able isotope Ein (MeV) a (MeV) b (MeV�1)

h Thermal 1.0888 1.6871
1 1.1096 1.6316
14 1.1700 1.4610

Thermal 0.988 2.249
1 0.988 2.249
14 1.028 2.084

Thermal 0.88111 3.4005
1 0.89506 3.2953
14 1.96534 2.8330

u Thermal 0.966 2.842
1 0.966 2.842
14 1.055 2.383
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RtðEÞ ¼
X

l

an;lun;lðEÞ l ¼ 1;2; . . . ;2n þ 2N � 2

and an;l ¼
Z

DE
RtðEÞun;lðEÞdE l ¼ 1;2; . . . ;2n þ 2N � 2

ð50Þ

Integrating the continuous-energy total cross-section, the inte-
grated total cross-section is obtained:
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Fig. 4. Simulation of the 27th group uranium-238 total cross-section.
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Fig. 5. Simulation of the 27th group uranium-238 total cross-section.
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here Rt,g is the integrated total cross-section of the gth group.
We take the 27th group total cross-section of uranium-238

for an example. Fig. 3 shows the continuous-energy total cross-
section of uranium-238 from the continuous-energy data library
of MCNP4C. It is seen that most part of the cross-section is
smooth, though there is a big peak standing about from 6.5 eV
to 7.0 eV. In the paper of Cho and Park it is suggested that for
smooth function the Daubechies’ order N P 4 is good enough
that the scaling function can be chosen as the expansion basis.
Therefore, the Daubechies’ order N is set to be 5 in this paper.
Fig. 4 shows the behavior of the simulating as N changed from
3 to 5. Fig. 5 shows the behavior of the simulating as the dila-
tion order changed from 5 to 7. We can see that the results of
the cross-section simulation become better as the dilation order
increases. The simulation obtains a good result when the dilation
order n reach 7. If the dilation order is not large enough such as
n = 5, the peak will be broadened as shown in the Fig. 5. The
errors of the group total cross-section are shown in Fig. 6. The
errors reduce along with n and N increasing. Although n = 7 is
good enough for the 27th group, the dilation orders have to be
set larger for the higher energy resonant groups, because the
total cross-sections are more complicated in those resonant
groups. We set two cases of dilation orders for different resonant
groups to analyze the convergence of this method along with
increasing the dilation order. The cases of dilation orders are
shown in Table 2.

A computation code named WAVRESON has been imple-
mented based on the model introduced above. Three problems
are calculated to validate this method. The first problem is a
PWR pin-cell problem. The results are calculated under 10 con-
ditions with different enrichments. The second problem is the
MOX fuel problem with the same geometry as the PWR pin-cell
problem. The third problem is a cylindrical cluster geometry
problem. It is calculated to validate the capability of solving
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Fig. 3. The 27th group total cross-section of uranium-238.
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Fig. 6. The simulation errors of uranium-238 integrated total cross-section of the
27th group.
complex geometry problems. They are shown in the following
paragraphs.



Table 2
Dilation orders for different resonant groups.

Group 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th

Case 1 8 8 8 8 8 8 8 8 7 7 7 7 7
Case 2 9 9 9 9 9 9 9 8 8 7 7 7 7

Table 3
Material composition of the PWR fuel cell.

Material Atomic density (1024 atom/cm3)

235U + 238U 16O 1H Zr-nature

Fuel 0.0230934 0.0461868 – –
Cladding – – – 0.04360
Water – 0.03362 0.06723 –

Table 4
Densities of nuclides within fuel region of different enrichments.

Enrichment (%) Atomic density (1024 atom/cm3)

235U 238U 16O

3 0.00070140 0.02239200 0.0461868
5 0.00115467 0.02193873 0.0461868
7 0.00161654 0.02147686 0.0461868
10 0.00230934 0.02078406 0.0461868
15 0.00346401 0.01962939 0.0461868
30 0.00692802 0.01616538 0.0461868
50 0.01154670 0.01154670 0.0461868
70 0.01616538 0.00692802 0.0461868
90 0.02078406 0.00230934 0.0461868
100 0.02309340 0.0 0.0461868
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3.2. PWR fuel cell problem

The first problem is a PWR fuel cell problem shown in Fig. 7. The
cell is subdivided into seven regions, and the track spacing is
0.01 cm. Regions 1 and 2 are water, region 3 is cladding, and the
regions from 4 to 7 are fuel. The size of the PWR fuel cell is
1.26 cm � 1.26 cm, the radii of the cladding and fuel are
0.475 cm and 0.4095 cm, respectively. The material compositions
are shown in Table 3, and different nuclide densities are shown
in Table 4.

In MCNP calculation, 20,000 particles are put for each genera-
tion and 250 generations are tallied, 50 of which are disregarded.
From the results in Table 5, it is seen that the results of Case 2
are better than those of Case 1, which means that increasing the
dilation orders is effective for improving the accuracy. All of the re-
sults are smaller than those calculated by MCNP except the 3%, 5%,
and 7% enrichment situations in Case 2. The reason for this phe-
nomenon is that in this method the resonant peaks of flux within
the resonant energy range will be broadened, if the dilation orders
of the wavelet scaling function expansion are not large enough. The
phenomena also can be seen in Fig. 5. The broadened flux of reso-
nant energy range will increase the resonant absorption and make
the k-inf smaller than the reference value. It is similar to the phe-
nomena of Doppler broadening, which also makes the k-inf smaller
than reference value. It also indicates the reason why increasing
the dilation orders can improve the results. The improvements
of the results for lower enrichment cases are more remarkable than
the higher enrichment cases, because the resonant effects of
238U within high energy resonant groups are much more severe
than those of 235U. The errors of uranium-238 total cross-section
reaction rate compared with MCNP are presented in Table 6. It is
seen that increasing the dilation orders is also beneficial to
improve the accuracy of the total cross-section reaction rate of
uranium-238.

Fig. 8 is the fine-structure flux spectrum of the 4th region in 15%
enrichment condition, which shows that the fine-structure neutron
spectrum in the fuel of three-zone PWR fuel cell problem agrees
with the result of MCNP well. The reason for the differences on
the left side of the lines is disregarding the neutron up-scattering
Fig. 7. Geometry of the PWR fuel cell.
from the thermal energy range. From Table 6, although there are
some differences in the left side of the continuous-energy fluxes,
the bias of the 27th group total reaction rate of uranium-238 is less
than 1.0%. Therefore, the bias introduced by disregarding the up-
scattering from the thermal energy range to the resonant energy
range is small. Actually, for multi-group neutron transport calcula-
tion, the up-scattering from the thermal energy range to the reso-
nant energy range is always not taken into consideration.

To compare the calculation accuracy with the standard reso-
nance self-shielding calculation method, we calculate the same
PWR pin-cell problem with DRAGON, which applies the generaliza-
tion of Stamm’ler method as the resonance self-shielding calcula-
tion method. The 69 multi-group library based on nuclear data
file jeff31 is used. The results are presented in Fig. 9. We can see
that WAVERESON is more accurate compared with DRAGON, espe-
cially in the high enrichment cases.

Another problem is the MOX fuel problem (Worrall, 1999). The
geometry of this problem is same as PWR cell problem. The fuel is
changed to the MOX fuel. The atomic densities of the MOX fuel are
in Table 7. The compositions of cladding and water are same as the
PWR cell problem. In the MCNP calculation, 10,000 particles are
put for each generation and 250 generations are tallied, 20 of
which are disregarded. From Table 7, we can see that there are se-
ven kinds of resonant nuclides in MOX fuel. Therefore, the reso-
nance interference effects between the resonant nuclides are
noticeable. The results are shown in Table 8, increasing the dilation
order is also beneficial for improving the accuracy. The enrichment
of plutonium is significant for the accuracy of MOX problem be-
cause of the resonant interference effect. We can predict that the
larger weight ratio is and the more kinds of resonant nuclides there
are, the larger dilation orders are needed, because resonant inter-
ference effects are more severe and the flux spectrums are more
complicated within resonant energy range.



Table 5
The k-inf results of PWR fuel cell.

Enrichment (%) MCNP k-inf Case 1a Case 2b

WAVERESON k-inf Error (%) WAVERESON k-inf Error (%)

3 1.38497 ± 0.00035 1.383085 �0.135 1.387733 0.199
5 1.48563 ± 0.00023 1.482164 �0.233 1.487005 0.093
7 1.53626 ± 0.00027 1.531529 �0.308 1.536376 0.008
10 1.57835 ± 0.00030 1.572394 �0.377 1.577137 �0.077
15 1.61687 ± 0.00031 1.609771 �0.439 1.614251 �0.162
30 1.67677 ± 0.00029 1.669067 �0.459 1.672689 �0.243
50 1.73173 ± 0.00027 1.724503 �0.417 1.727086 �0.268
70 1.77958 ± 0.00027 1.773553 �0.339 1.775217 �0.245
90 1.82811 ± 0.00025 1.822348 �0.315 1.823204 �0.268
100 1.86524 ± 0.00025 1.859690 �0.298 1.860425 �0.258

a The Case 1 dilation orders shown in Table 2 are utilized.
b The Case 2 dilation orders shown in Table 2 are utilized.

Table 6
The errors of uranium-238 total cross-section reaction rate compared with MCNP.

Group Error/%

Case 1 Case 2

15th 4.574 1.943
16th 4.977 2.091
17th 6.529 1.567
18th 4.563 0.664
19th 3.201 0.371
20th 4.797 1.002
21st 1.924 0.555
22nd 0.265 0.344
23rd �0.321 �0.465
24th 0.784 0.853
25th 0.390 0.453
26th �0.543 �0.482
27th �0.888 �0.828
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Fig. 9. Comparison the results of WAVERESON and DRAGON with MCNP.

Table 7
Densities of the MOX fuel.

Nuclide Atomic density (1024 atom/cm3)

Case I Case II

16O 4.683197E�02a 4.682251E�02
235U 1.127624E�03 1.091347E�03
238U 2.115426E�02 2.047369E�02
238Pu 2.809131E�05 4.573003E�05
239Pu 6.219000E�04 1.012395E�03
240Pu 2.962335E�04 4.822405E�04
241Pu 1.072423E�04 1.745804E�04
242Pu 8.063234E�05 1.312619E�04

a Read as 4.683197 � 10�2.
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3.3. Cylindrical cluster geometry problem

Marleau et al. (2000) gave out the cylindrical cluster geometry
problem. The geometry of this problem is shown in Fig. 10. The
material components and atomic densities of the fuel region are
the same as 3% enrichment case of the PWR cell problem shown
in Table 4. Beyond the fuel region is light water, the atomic den-
sities of oxygen and hydrogen are the same as PWR cell case
shown in Table 3. In MCNP calculation, 10,000 particles are put
for each generation and 250 generations are tallied, 20 of which
are disregarded. A good result is obtained shown in Table 9,
although the problem has complicated geometry and unstruc-
tured distribution fuel.
4. Conclusion

This paper presents an innovative method for resonance self-
shielding calculations. In this method, the energy variable of the
neutron angular flux in resonant energy range is dealt with by
utilizing wavelets scaling function expansion method. Some pre-
liminary numerical results demonstrate that the wavelet scaling
function expansion method is capable of calculating k-inf and
problem-dependent fine-structure neutron spectrum within



x

Fig. 10. Geometry of cylindrical cluster geometry problem.

Table 9
The k-inf results of cylindrical cluster geometry problem.

MCNP WAVRESONa Error (%)

0.83149 ± 0.00033 0.829768 �0.207

a The Case 1 dilation orders shown in Table 2 are utilized.

Table 8
The k-inf results of the MOX fuel problem.

PU enrichment (%) MCNP k-inf Case 1a Case 2b

WAVERESON k-inf Error (%) WAVERESON k-inf Error (%)

Case I 1.32382 ± 0.00046 1.319134 �0.354 1.323242 �0.058
Case II 1.31622 ± 0.00044 1.305828 �0.790 1.309789 �0.489

a The Case 1 dilation orders shown in Table 2 are utilized.
b The Case 2 dilation orders shown in Table 2 are utilized.
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resonant energy range with good accuracy. Moreover, this meth-
od has other advantages compared to conventional resonance
methods. First, this method is capable of solving complicated
geometry resonant calculation problems, if the transport calcula-
tion method which has the ability to solve complex geometry
problems is applied. Secondly, there is no more iterative calcula-
tion needed in this method even the fuel consists of more than
one resonant nuclide. Thirdly, the rigid continuous-energy flux
spectrum rather than the pseudo continuous-energy flux spec-
trum calculated by interpolating point-wise fluxes in the PW
continuous-energy resonance method is obtained, because the
Daubechies’ wavelets scaling function utilized as the expansion
basic function of the flux is a continuous function. Fourthly, this
method is more efficient than PW resonant calculation method.
In this method, the neutron transport equation is transformed
to a set of expansion moment equations within the resonant en-
ergy range. Even applying the Case 2 dilation orders shown in
Table 2, there are totally less than 4900 equations, which are
much less than those of the PW method. However, continuous-
energy data coming from MCNP nuclear data library are applied
within the resonant energy range while the multi-group data
coming from WIMSD4 format nuclear data library are used in
the non-resonant energy range. The data file compatibility is
therefore another issue which should be concerned in further
calculation. This can be improved by processing the continu-
ous-energy data and multi-group data by NJOY (Farlane and Boi-
court, 1975) correspondingly to maintain the coherence.
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