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a b s t r a c t

The Variational Nodal Method (VNM) expands the nodal volumetric flux and surface partial current into
the sums of orthogonal basis functions without using the transverse integration technique. The exclusion
of the transverse integration provides a number of advantages for employing the VNM in Pressurized
Water Reactor (PWR) core simulation. The orthogonality of those basis functions guarantees the con-
servation of neutron balance regardless of the expansion orders, providing an opportunity to accelerate
the computationally expensive full-order iteration by using cheap low-order sweeping with high-order
moments fixed. This was named as the Partitioned-Matrix (PM) technique in the legacy VNM code
VARIANT, and was applied to the within-group (WG) iteration. It is very effective for neutron-transport
calculation, but less effective for neutron-diffusion mainly due to the reduced number of high-order
partial current moments. In this paper, we extend the PM technique to the Fission-Source (FS) itera-
tion to accelerate the flux convergence by using low-order flux moments also. From the macroscopic
acceleration point of view, it converges the fission- and scattering-source distributions by using
computationally cheap low-order iteration faster than the original full-order sweeping. Based on our
new VNM code VIOLET, considering the fact that the discontinuity factor used for preserving neutron
leakage rates during spatial homogenization slows down the nodal iteration convergence, numerical
tests were carried out for two typical PWR problems respectively without and with discontinuity factors.
By analyzing both the computational effort in terms of FLOP (FLoating-point OPeration) and computing
time, the following conclusions have been demonstrated. The legacy PM technique for WG iteration can
provide an acceleration ratio of about 2 for the PWR core neutron-diffusion calculation with or without
using discontinuity factors, while the one for FS iteration itself can accelerate by a factor of about 3 which
is higher. By accelerating both the WG and FS iteration simultaneously, the acceleration ratio is about 4
for both the two PWR problems. In addition, by extending the PM technique from the WG iteration to the
FS iteration, the neutron-diffusion calculation of the VNM can be accelerated very effectively with almost
no extra storage or implementation cost to the existing computer code.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The Variational Nodal Method (VNM) (Lewis and Miller, 1984;
Carrico et al., 1992) was first developed by Northwestern Univer-
sity and Argonne National Laboratory (ANL) to solve the multi-
group steady-state neutron-diffusion and -transport equations for
reactor core calculations. It uses a variational principle for the even-
nd Technology, Xi'an Jiaotong
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parity form of the Boltzmann transport equation. In this variational
principle, the odd-parity Lagrange multipliers along the nodal in-
terfaces guarantee neutron conservation for each node. The clas-
sical Ritz procedure is employed by using orthogonal polynomials
in space and spherical harmonics in angle. Nodal response matrices
are then formed for the volumetric flux moments and surface
partial current moments. The VARIANT code (Palmiotti et al., 1995),
developed at ANL inmid 90s was the first production code based on
VNM. It has been employed for fast reactor routinely designing both
in ANL such as the REBUS code (Toppel, March 1983) and in Europe
such as the ERANOS code (Doriath et al., 1994). In 2007, a new
version of the VARIANT code named NODAL was developed in ANL
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as one of the solvers in the UNìC package (Palmiotti et al., 2007; Li
et al., 2015). In 2011, it has also been implemented into the INSTANT
code in Idaho National Laboratory (INL) (Wang et al., 2011).

The exclusion of the transverse integration in the VNM provides
several advantages (Lawrence, 1986; Wagner, 1989). Firstly, the
VNM expands the volume flux by using basis functions which
usually are orthogonal polynomials. Once obtained those flux
moments, continuous flux profile within each node can be ob-
tained, leaving no need for pin power reconstruction which usually
introduces more approximations. Secondly, for adjoint flux calcu-
lation usually employed in transient simulation, the VNM can
guarantee that the corresponding mathematical adjoint flux is
exactly the same with the physical one. Thirdly, it is possible to
extend the homogeneous VNM to heterogeneous VNM which can
treat heterogeneous cross section distribution within each node
(Smith et al., 2003; Li et al., 2014; Wang et al.). Fourthly, the VNM
employs the Pnmethod for angular variable withinwhich neutron-
diffusion equation is equivalent to the P1 approximation, enabling
this method can to be consistently extended to neutron-transport
calculation. Thus, recently a new VNM code named VIOLET has
been developed at Xi'an Jiaotong University (XJTU) for thermal
reactor such as PressurizedWater Reactor (PWR) neutron-diffusion
simulation.

The numerical process of the VNM contains three levels of
iteration. The outermost is the Fission-Source (FS) iteration (also
termed as the outer iteration in literatures) based upon the Power
Method (Lewis and Miller, 1984). At each FS iteration, just in case if
up-scattering shows up, the multi-group (MG) flux system is solved
by using the legacy Gauss-Seidel (GS) algorithm. Only one sweep
over the energy groups is required if there is no up-scattering. For
each group, the within-group (WG) response matrix system is
solved by using the Red-Black Gauss-Seidel (RBGS) algorithm
(Palmiotti et al., 1995). It is the so-called WG iteration (typically
termed as the inner iteration in literatures).

Traditionally, the VARIANTcode employs the Partitioned-Matrix
(PM) technique to accelerate the WG iteration. Before each full-
order partial current moments iteration, a number of low-order
partial current moments iterations are carried out with the high-
order ones fixed. Usually, only one full-order sweep is carried out
for each energy group within each MG iteration. The PM technique
performs very well in transport cases due to the large number of
high-order moments. However, the effect is less effective in diffu-
sion because there are fewer high-order moments to eliminate.
Though other techniques or algorithms such as the Krylov (Saad,
2003; Saad and Schultz, 1986) ones including CG (Conjugate
Gradient) (Wang et al., 2011) and GMRES (Generalized Minimal
Residual Method) (Wang et al., 2011; Lewis et al., 2013; Li et al.,
2012) have also been proposed and tested, they usually require
more memory due to the storage of orthogonal vectors. In addition,
these algorithms usually require preconditioners to be compatible
with the PM accelerated WG RBGS iteration, making the code
system much more complicated.

The rest of this paper is organized as following. Section 2 de-
scribes the theory of the VNM including its iteration process, the
PM technique and its implementations to the both the WG and FS
iterations of the VNM, Section 3 assesses the PM technique
numerically by using two typical PWR problems respectively with
and without discontinuity factors. Section 4 summarizes the con-
clusions and discussions.

2. Theoretical formulation

After introducing the VNM response matrices and the iteration
process, the PM techniques for both the WG and FS iterations are
described in detail. The computing efforts of applying these
response matrices are evaluated and summarized based on these
formulas.
2.1. The Variational Nodal Method

After the multi-group approximation for the energy variable
and the P1 approximation for the angular variable, isotropic scat-
tering with transport correction and isotropic fission, the neutron-
transport equation becomes the Multi-Group neutron-diffusion
equation together with its albedo boundary condition:

8>>><
>>>:

VJg þ
P
r;g
Fg¼ Sg

1
3
VFg þ P

tr;g
Jg¼0

; g ¼ 1 � G (1)

Sg ¼
X
g0sg

P
s;gg0

Fg0 þ 1
k

X
g0

Fgg0Fg0 (2)

Fg � 2JTgng ¼ bg;g$
�
Fg þ 2JTgng

�
; r2Gg (3)

where common symbols are used as in literature (Lewis and Miller,
1984), Jg and ng are column vectors. The variational principle (Lewis
and Miller, 1984) turns out to be:
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For each energy group and each node, the volumetric flux and
source are expanded by using basis functions:

FgðrÞ ¼
XI

i¼1

fi;gfiðrÞ ¼ f T4g ; r2v (6)

SgðrÞ ¼
XI
i¼1

si;gfiðrÞ ¼ f Tsg ; r2v (7)

And the surface net outgoing current is expanded as

JTgðrÞng ¼
XK
k¼1

jg;k;ghg;kðrÞ ¼ hT
gjg;g r2Gg (8)

where fi(r) and hg,k(r) are orthogonal polynomial basis functions
respectively on nodal volume v and surface Gg, I and K are the
number of expansion terms, 4g, sg, jg,g, f and hg are column vectors
containing the corresponding moments and functions.

Nodal response matrices can be formed (Lewis and Miller, 1984;
Carrico et al., 1992; Palmiotti et al., 1995; Wang et al., 2011) by
firstly substituting the expansions in Eqs. (6)e(8) into the func-
tional in Eq. (5), the boundary conditions in Eq. (3) and the source in
Eq. (2) and then requiring the functional to be stable in terms of 4g

and jg respectively:



Fig. 1. The VNM iteration process.

Y. Li et al. / Progress in Nuclear Energy 85 (2015) 640e647642
sg ¼
X
g0sg

Sgg04g0 þ 1
k

X
g0

Fgg04g0 (9)

jþg ¼ RgP5IK j
þ
g þ Bgsg (10)

4g ¼ Hgsg � Cg
�
IN$NS

�P
�
5IK j

þ
g (11)

where П stands for the spatial connection matrix containing the
albedo outer boundary condition and the continuity inner bound-
ary condition, IX stands for an X� X identitymatrix,N is the number
of nodes, NS is the number of surfaces per node, 5 refers to tensor
product between the two matrices, the surface partial current
vector is defined as
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The response matrices R, B, H, C and M, depends on nodal ge-
ometry, material and the volumetic and surface expansion orders,
are block diagonal over spatial nodes and can be found elsewhere
(Palmiotti et al., 1995). Once the discontinuity factors (DF) show up,
this inner boundary condition can be obtained by imposing net
current continuity and flux discontinuity:

j�g;g ¼ 2fg0

fg0 þ fg
jþg0;g þ

fg0 � fg
fg0 þ fg

jþg;g (14)

fg and fg0 are the discontinuity factors (DF) of the two adjacent
nodes g and g0 obtained by using the legacy Generalized Equiva-
lence Theory (GET) (Smith, 1986, 1980).

The appearance of the fission source makes the above equation
an eigenvalue problem. The legacy Power Method (Lewis and
Miller, 1984; Xie and Deng, 2005) is employed and referred as
Fission-Source (FS) iteration here. Within each FS iteration, the flux
has to be updated with fission source fixed by employing the legacy
Gauss-Seidel algorithm. This iteration is termed as multi-group
(MG) iteration. It is noticeable that only one MG iteration would
be required if there is no up-scattering which is usually the case for
the PWR core diffusion calculation. Within each MG iteration, the
flux vector is updated one group after another, which means there
is an sweeping from the 1st energy group to the G'th energy group.
For each energy group, a) the source is constructed by using Eq. (9),
b) the current is iteratively updated as in Eq. (10) by employing the
Red-Black Gauss-Seidel (RBGS) algorithm, c) the flux is constructed
by using the neutron balance equation in Eq. (11).

The iteration process of VNM is shown in Fig. 1. It has to be
pointed out that there is an Absolute Error Tolerance (AET) and a
Relative Error Tolerance (RET) used as the iterative vector conver-
gence criteria. Taking vector v as an example, the AET εv and RET ev
are as following:
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2.2. The Partitioned-Matrix acceleration for within-group iteration

Because of the hierarchical system of orthogonal polynomials in
space, a low-order system can closely resemble the original full-
order system by maintaining neutron balance. Thus, traditionally
the Partitioned-Matrix (PM) technique is applied to the within-
group (WG) iteration.

Partitioning the surface partial current vector:
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where 0 and 1 denote the flat and non-flat surface moments
respectively. Correspondingly, the WG iteration formulas can also
be partitioned
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As in VARIANT, the WG iteration can be done only for the flat-
moment system with non-flat ones fixed
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Once the flat-moment system converged, a full sweep can be
carried out to update the all of the moments including the non-flat
ones. The VNM iteration process is shown in Fig. 2.

By comparing the Eqs. (19) and (20), it can be found that the PM
technique is designed to save numbers of updates on the non-flat
partial current moments by requiring a number of more updates
on the flat ones.
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2.3. The Partitioned-Matrix acceleration for Fission-Source iteration

Due to the fact that the PM acceleration forWG iteration reduces
computing times by smaller percentages than when used in higher
order transport calculations, we extend the PM technique to the FS
iteration in this paper.

Partitioning the surface partial current and the volume flux
vectors:
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where a and b denote the low (K1) and high-order (K2) surface
moments, and l and h denote the low (I1) and high-order (I2)
volume moments. Correspondingly, the iteration formulas can be
partitioned
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Before each full-order sweeping, a number of low-order
sweeping is carried out with high-order moments fixed.
Fig. 2. The VNM iteration process with partitioned-matrix acceleration for WG
iteration.
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By comparing the Eqs. (23) and (24) with Eqs. (25) and (26), it
can be found that the PM technique for FS iteration is designed to
save numbers of updates on the high-order currents and flux mo-
ments by requiring a number of more updates on low-order cur-
rents and flux moments.

The VNM iteration process is shown in Fig. 3. It can be found that
the total computing effort in FLOP is mainly contributed by four
steps: (1) the source construction or the applications of the scat-
tering and fission matrices; (2) the nodal response or the applica-
tions of the response matrices B, R, H and C; (3) the specification of
nodal incoming partial current if discontinuity factors show up; (4)
iterative error estimations.
3. Numerical results

Based on the formulations of the Variational Nodal Method, a
code named VIOLET has been developed in Xi'an Jiaotong Univer-
sity for Pressurized Water Reactor core neutron-diffusion calcula-
tion. And the PM technique has been implemented to accelerate the
Fig. 3. The VNM iteration process with partitioned-matrix acceleration for FS iteration.



Table 1
Cross sections for the PWR problem without discontinuity factor.

Material g Dg/cm
Pg

a/cm
�1 n

Pg
f /cm

�1 P21
a /cm�1

1 1 1.5 0.01 0 0.02
2 0.4 0.08 0.135

2 1 1.5 0.01 0 0.02
2 0.4 0.085 0.135

3 1 1.5 0.01 0 0.02
2 0.4 0.13 0.135

4 1 2.0 0 0 0.04
2 0.3 0.01 0

5 1 2.0 0 0 0.04
2 0.3 0.055 0
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FS iteration. Neutron diffusion calculation usually is employed for
assembly or quarter assembly homogenized reactor core calcula-
tion. During the homogenization process, the neutron leakage rates
during spatial homogenization can be preserved by using Gener-
alized Equivalence Theory with discontinuity factor (Smith, 1986,
1980) or other homogenization techniques without discontinuity
factor, such as superhomogenization (H�ebert, 2009). Considering
the fact that the application of discontinuity factor slows the nodal
iteration convergence (Zika and Downar, 1993), two typical test
problems without and without discontinuity factor respectively
have been chosen to evaluate and analyze the code and the algo-
rithms. During these tests for PM technique, all other acceleration
techniques such as the multi-level iteration optimization (Li et al.,
2013) in VIOLET are turned off. These calculations were per-
formed using a 32 bit Intel® Core™ i7-2600 CPU @3.40 GHz with
Windows 7 operating system and 3 GB memory.

3.1. PWR problem without discontinuity factor

As shown in Fig. 4, the first test problem is a quarter core
problem representing a typical PWR operating state. There are 5
types of fuel assemblies named as A-E, containing 5 different ma-
terials tagged by numbers 1 to 5 as listed in Table 1. Each type of
assembly has its own axial composition as shown in Fig. 4. There
are partially and fully inserted control rods in assemblies E and C
respectively. Assembly D is the reflector. The mesh sizes are the
same as the assembly size in radial direction, and 20 cm each in the
axial direction. Totally, there are 1311 spatial nodes with 6 surfaces
per node.

The volumetric flux is represented by a 5th order polynomial in
radial and 7th order polynomial axially, while the partial current on
each interface is represented by a 2nd order polynomial. This leads
to 58 degrees of freedoms (DOFs) per node, and 6 DOFs for each
node surface. The convergence criteria for keff and fission source
were set as ek¼ 1.0� 10�5 and ef¼ 1.0� 10�4 respectively, with the
maximum number of FS iterations set to be 500. Due to the absence
of up-scattering, there is no MG iteration. For the WG iteration of
each energy group, a maximum iteration number Igmax ¼ 100, an
AET εWG ¼ 1.0 � 10�12 and a RET eWG ¼ 1.0 � 10�3 were employed
for the partial current update. It is worth to point out that the
numerical results before and after acceleration are the same with
the convergence criteria, which means the difference between
them are less than 1.0 � 10�4.

For this problem, computing effort in FLOP for the full-order
response matrices B, R, H and C are respectively 2088, 1296, 3364
and 2088. After 244 FS iterations with 9044 WG iterations, the
results converged to the right answer. For the PM acceleration, the
Fig. 4. The configuration for the PWR pr
number of low-order current moments K1 is 1 (flat), while first 4
(linear in three dimensional spaces) volumetric flux moments are
considered as the low-order ones. The number of low-order FS it-
erations before each full-order one is determined by the reduction
of keff error. The low-order improvement is taken as achieved once
the relative error of keff (ek) is reduced by 50%. In this case, it turned
out that only 20 full-order FS iterations (containing 802 full-order
WG iterations) together with 272 low-order ones (containing
8553 low-order WG iterations) are required to reach the same
results.

As listed in Table 2, without the PM acceleration, 35-second CPU
time is needed by the entire iteration process to complete 21 � 109

FLOP. Among those FLOP, there are 16 � 109 FLOP (about 76%)
required by the WG iteration. In contrast, only 8-second CPU time
would be needed to carry out 3 � 109 FLOP when PM technique is
applied. The CPU time for full-order iteration is reduced to about 4 s
while introducing about 4 s for extra low-order iterations. Fig. 5
shows the convergences of keff and fission source with and
without employing of the PM technique. It can be found that the
errors would rebound after each full-order sweep, but the low-
order sweeps reduces it again quickly. And for the first full-order
sweeps, less number of low-order sweeps would be required
since the error of source distribution is large. Once the error of
source distributing becomes small, more low-order iterations are
going to be required to reduce the error of keff by 50%. In addition,
non-monotonic convergence is observed in the accelerated case,
which is usual for coarse mesh accelerations.

3.2. PWR problem with discontinuity factor

As shown in Fig. 6, the second test problem is also a quarter core
problem referring to a typical PWR operating state. Comparing to
the first problem, there are several facts making it much more
oblem without discontinuity factor.



Table 2
Computing efforts for the PWR problem without discontinuity factor.

Total Full-order FS excluding WG Full-order WG Low-order FS excluding WG Low-order WG

Without PM Time (s) 34.7 8.9 25.8 e e

FLOP (109) 20.7 4.9 15.8 e e

With PM Time (s) 8.3 1.5 2.3 1.1 3.4
FLOP (109) 2.6 0.4 1.4 0.3 0.5
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realistic. Firstly, there are three batches of full assemblies including
new ones and the ones experienced 1 and 2 cycles already. Sec-
ondly, there are numbers of burnable poisons (Gd) rod in these
assemblies. The numbers Gd rods per assembly are among 0, 8, 20
and 24. Thirdly, all control rods are out of the core, but the boron
concentration is 1830 ppm (the corresponding critical boron con-
centration is 1953 ppm). Fourthly, each assembly is divided into 4
nodes in radial direction and 20 cm per node in axial. Totally, there
are 3978 spatial nodes with 6 surfaces per node. The cross sections
are provided by using the CASMO-4 (University release) (Studsvik
Scandpower, 2009).
Fig. 5. Fission-Source iteration processes of the PWR problem without discontinuity
factor.

Fig. 6. The configuration for the PWR problem with discontinuity factor.
The volumetric flux is represented by a 7th order polynomial
radially 5th order polynomial axially, while the surface partial
current is represented as a 3rd order polynomial. It leads to 71 DOFs
per node and 10 DOFs per nodal surface. The convergence criteria
are the same with the first problem. Correspondingly, computing
effort in FLOP for the full-order response matrices B, R, H and C are
respectively 4260, 3600, 5041 and 4260. After 386 FS iterations
with 11,177 WG iterations, the results converged to the right
answer. For the PM acceleration, the number low-order current
moment K1 is 1 (flat), while 1 (flat) volumetric flux moments is
considered as the low-order ones. The number of low-order FS it-
erations before each full-order one is determined by the reduction
of keff error. The low-order improvement is achieved once the
relative error of keff (ek) is reduced by 50%. In this case, only 37 full-
order FS iterations (containing 2156 full-order WG iterations)
together with 309 low-order ones (containing 8311 low-order WG
iterations) are required to reach the same results (the difference
between the numerical results before and after acceleration is less
than 1.0 � 10�4).

As in Table 3, the total computational efforts required by the
original VNM iteration is 210� 109 FLOP, and correspondingly 442 s
of CPU time. Again, about 76% effort was spent on the WG itera-
tions. With the PM acceleration, the total computing time is
reduced to 120 s to complete 40� 109 FLOP. The computing effort in
full-order FS iteration was reduced to 37 � 109 FLOP while 3 � 109

extra FLOP are added in the low-order FS iterations. The FS iteration
is shown in Fig. 7, indicates that the same acceleration performance
of the PM technique can be achieved for the PWR core when the
discontinuity factors are presented.

4. Conclusion and discussion

The legacy Partitioned-Matrix (PM) technique traditionally
developed for the within-group (WG) iteration acceleration is now
extended to accelerate the Fission-Source (FS) iteration of the
Variational Nodal Method (VNM) for PWR core neutron-diffusion
calculation. Based on our new VNM code VIOLET, numerical test
were carried out for two typical PWR problems with and without
using discontinuity factors. By analyzing both the computational
effort in terms of FLOP (FLoating-point OPeration) and the
computing time, it has been demonstrated that the PM technique
can provide an acceleration ratio of about 4 for the test problems.
By extending the PM technique from the WG iteration to the FS
iteration, the neutron-diffusion calculation can be accelerated very
effectively with almost no extra storage or implementation cost to
the existing computer code. The PM technique roots in the
orthogonality of the basis functions. Considering the fact that the
PM technique performs very well in accelerating the WG iteration
for the VNM neutron-transport calculation, its extension from WG
iteration to FS iteration is also expected to work well for the VNM
neutron-transport calculation.

Based on the idea of macroscopic acceleration, the PM technique
is employed to accelerate the FS iteration of the VNM. The general
term macroscopic acceleration used here represents all the accel-
eration techniques that uses coarse-mesh or low-order expansion
methods in space, angle or energy to accelerate the original fine-



Table 3
Computing efforts for the PWR problem with discontinuity factor.

Total Full-order FS excluding WG Full-order WG Low-order FS excluding WG Low-order WG

Without PM Time (s) 442.2 103.2 339.0 e e

FLOP (109) 210.8 42.7 168.1 e e

With PM Time (s) 119.7 17.8 64.8 11.5 25.6
FLOP (109) 40.0 4.1 32.4 1.7 1.8

Fig. 7. Fission-Source iteration processes of the PWR problem with discontinuity
factor.
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mesh or high-order methods, such as the Coarse Mesh Rebalance
(CMR) (Lewis and Miller, 1984; Xie and Deng, 2005), Coarse Mesh
Finite Differencing (CMFD) (Smith and Rhodes, 2002; Joo et al.,
2002; Zhong et al., 2008), Diffusion Synthetic Acceleration (DSA)
(Koph, 1963; Larsen, 1982; Mccoy and Larsen, 1982; Azmy et al.,
1985), Non-Linear Iteration technique (NLI) (Smith, 1983; Liao,
2002) and other coarse mesh acceleration methods (Li, 2013;
Tatsumi and Yamamoto, 2003). There are two features in these
methods. Firstly, they use an efficient coarse-mesh calculation to
accelerate a fine-mesh calculation which is expensive in both
computing efforts and storage. Secondly, since the coarse-mesh
method is not as accurate as the fine-mesh calculation, the
coarse-mesh calculation has to be corrected by the corresponding
fine-mesh iterative result. There are different ways to implement
the correction. One can correct the diffusion coefficient as in CMR
and DSA, or add a new term as in CMFD, or define a discontinuity
factor as in EFEN method (Li, 2013). The philosophy behind these
CMAmethods is to catch the source profile during iteration as early
as possible. From this point of view, the PM technique is one of
those CMA methods. It uses the low-order spatial expansion mo-
ments corrected by adding the high-order moments to balance the
source distribution quickly. By extending the PM technique from
the WG iteration to the FS iteration, the neutron-diffusion calcu-
lation of the VNM can be accelerated very effectively with almost
no extra storage and implementation costs to the existing code.
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