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Abstract

The advanced nodal method for solving the multi-group neutron transport equation in two-dimensional triangular geometry is devel-
oped. To apply the transverse integration procedure, an arbitrary triangular node is transformed into a regular triangular node using
coordinate transformation. The angular distributions of intra-node neutron fluxes and its transverse-leakage are represented by the
SN quadrature set. The spatial distributions of neutron flux and source in the regular triangle are given approximately by an orthogonal
quadratic polynomial, and the spatial expansion of transverse-leakage is approximated by a second-order polynomial. To establish a
stable and efficient iterative scheme, the improved nodal-equivalent finite difference algorithm is used. The results for several benchmark
problems demonstrate the higher capability of the method to yield the accurate results in significantly smaller computing times than those
required by the standard finite difference method and the finite element spherical-harmonics method.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Many methods, such as a finite element spherical har-
monics method (McGhee et al., 1997; Cao and Wu,
2004), a discrete ordinates finite element method (Ressel
and Starke, 2000) and an exponential characteristic method
(Mathews and Brennan, 1997), have been developed for an
accurate analysis of the neutron transport problems for the
unstructured triangular meshes in the last decade. How-
ever, the computational cost of these methods is greater,
especially for the problems needing the many meshes.
The nodal transport method is widely accepted as the accu-
rate and efficient analytical method for the problems of the
light water reactors with the rectangular geometry (Bad-
ruzzaman, 1985) and the fast reactors with the hexagonal
geometry (Wagner, 1989; Ikeda and Takeda, 1994). But
to my knowledge, there is no nodal transport method can
solve the problems with the unstructured triangular
meshes. So, we developed the two-dimensional nodal SN
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transport method for the neutron transport problem with
triangular meshes.

In this method, the arbitrary triangle is transformed into
regular one so that the transverse integration can be applied
and the procedure will be simplified. The SN quadrature set
is used for describing the angular distribution of neutron
flux and transverse-leakage. The orthogonal quadratic
polynomial function series is used for representing the spa-
tial distributions of neutron flux and source in the regular
triangle. To achieve the accurate and efficient solution, the
spatial distribution of transverse-leakage is approximated
by a second-order polynomial. Using these distributions,
we obtain an analytical solution for the reduced 1D trans-
port equation. The incoming and outgoing neutron fluxes
are related to the nodal average moments using this analytic
solution. To achieve a stable convergence, the nodal-equiv-
alent finite difference (NEFD) algorithm (Badruzzaman,
1985; Ikeda and Takeda, 1994) is improved for the triangu-
lar geometry. Then the Discrete Nodal Transport method
for the tRiangular geometry (DNTR) is encoded. We com-
pare our calculated results with those of some benchmark
problems and could get a good agreement.
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Fig. 1. Regular triangular node.
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2. Nodal SN transport method in triangular geometry

The two-dimensional SN transport equation in a node is
written as follows:

lm owg;mðx; yÞ
ox

þ gm owg;mðx; yÞ
oy

þ Rg
t w

g;mðx; yÞ ¼ Qgðx; yÞ

ð1Þ
where lm, gm, components in x and y directions of neutron
flight direction; m, angular direction; g, energy group; wg,m,
angular flux of the group g; Rg

t , total cross section of the
group g; Qg, neutron source given by

Qg ¼
X

g0

Xg0�g

s

þ vg

keff

m
Xg0

f

( )
/g0 ð2Þ

Here the angular distributions of scattering and fission
sources are assumed to be isotropic, and the following
notation is used

Pg0�g
s , scattering cross section (from group

g 0 to g); keff, eigenvalue; vg, fission spectrum; m
Pg0

f , produc-
tion cross section; /g, scalar flux.

Hereafter neutron energy group g will be omitted for
simplicity.

2.1. Coordinate transformation in a triangular node

Because, triangular meshes in the computational
domain are arbitrary, direct application of the transverse
integration would be difficult. Here, the transport equation
in a regular triangular node is obtained using the coordi-
nate transformation of Eq. (1).

We utilize the basic conception of the area coordinate
which is used widely in the finite element method. For
an arbitrary triangle, the Cartesian coordinates (x,y) of
three vertexes will be (x1,y1), (x2,y2), (x3,y3) in a coun-
ter-clockwise, and the triangle area is D. Suppose P is a
point inside the triangle and connected with three ver-
texes, the initial triangle is divided into three triangles
D1, D2, D3. The area coordinates k1, k2, k3 of P are repre-
sented by D1/D, D2/D, D3/D correspondingly. Using the
relation between the area coordinates k1, k2, k3 and the
Cartesian coordinates (x,y), one can transform an
arbitrary triangle in the physical coordinates into a right
triangle in the area coordinates and transform this right
triangle into a regular triangle (see Fig. 1) in the
computational coordinates. Written in terms of the
computational coordinates x 0 and y 0, the initial physical
coordinates x and y will be

x ¼ ðx1 þ x2 þ x3Þ=3þ ð�x1 þ ðx2 þ x3Þ=2Þx0

þ
ffiffiffi
3
p
ð�x2 þ x3Þy0=2

y ¼ ðy1 þ y2 þ y3Þ=3þ ð�y1 þ ðy2 þ y3Þ=2Þx0

þ
ffiffiffi
3
p
ð�y2 þ y3Þy0=2

ð3Þ

Inserting Eq. (3) into Eq. (1), omitted the superscripts of
the computational coordinates x 0 and y 0, one obtains the
transformed transport equation
lm
x

owmðx; yÞ
ox

þ gm
x

owmðx; yÞ
oy

þ Rtw
mðx; yÞ ¼ Qðx; yÞ ð4Þ

where lm
x ¼

ð�y2þy3Þlmþðx2�x3Þgm

2D ,

gm
x ¼

�x1 þ 1
2
x2 þ 1

2
x3

� �
gm þ y1 � 1

2
y2 � 1

2
y3

� �
lmffiffiffi

3
p

D
;

�2=36 x6 1=3; �ysðxÞ6 y 6 ysðxÞ; ysðxÞ ¼ ðxþ 2=3Þ=
ffiffiffi
3
p

and D is the area of initial arbitrary triangle.
The nodal average angular flux and three surface aver-

age angular fluxes in the physical coordinates and the com-
putational coordinates could be proved to be equal
through simple integral transformation.

2.2. Derivation of nodal transport integration equations

Integrating the transport Eq. (4) over �ys(x) 6 y 6

ys(x) (see Fig. 1), one obtains the following 1D intra-node
transport equation

lm
x

dfysðxÞ�wm
x ðxÞg

dx
þ RtysðxÞ�wm

x ðxÞ ¼ ysðxÞQxðxÞ � Lrm
x ðxÞ

ð5Þ
where �wm

x ðxÞ and QxðxÞ represent the 1D average angular
flux and average neutron source within the node, respec-
tively. Lrm

x ðxÞ is a transverse-leakage, which is given by

Lrm
x ðxÞ ¼ ðlm

u wm
u ðxÞ þ lm

v wm
v ðxÞÞ=

ffiffiffi
3
p

ð6Þ
where lm

u ¼ �ðlm
x �

ffiffiffi
3
p

gm
x Þ=2, lm

v ¼ �ðlm
x þ

ffiffiffi
3
p

gm
x Þ=2,

wm
u ðxÞ ¼ wmðx; ysÞ and wm

v ðxÞ ¼ wmðx;�ysÞ.
Solving Eq. (5) for the 1D average angular flux �wm

x ðxÞ
with lm

x > 0, one obtains

ysðxÞ�wm
x ðxÞ ¼

1

lm
x

Z x

�2=3

½ysðx0ÞQxðx0Þ � Lrm
x ðx0Þ�e

�Rt
lm

x
ðx�x0Þ

dx0

ð7Þ
and the outgoing surface average flux at the right (x = 1/3)
will be

�wm
x ¼

ffiffiffi
3
p

lm
x

Z 1=3

�2=3

ysðxÞQxðxÞ � Lrm
x ðxÞ

� �
e
�Rt

lm
x
ð1=3�xÞ

dx ð8Þ
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An analogous equation for lm
x < 0 can be derived

ysðxÞ�wm
x ðxÞ ¼

1

jlm
x j

Z 1=3

x
ysðx0ÞQxðx0Þ � Lrm

x ðx0Þ
� �

e
� Rt
jlm

x j
ðx0�xÞ

dx0

þ
ffiffiffi
3
p

3
e
� Rt
jlm

x j
ð1=3�xÞ�wm

x ð9Þ

Because, there is a vertex (see Fig. 1) and ysðxÞ�wm
x ðxÞ ¼ 0

at the left side (x = �2/3) of the regular triangular node, we
only need to consider the surface average angular flux at
the right side in the x direction.

2.3. Flux, source and transverse-leakage approximations

Eqs. (7)–(9) are the exact analytical solutions in the x

direction in the transverse-integrated nodal method. The
integrals arising in these equations are evaluated by
approximating the spatial variations of the node-interior
average angular flux, average source and transverse-leak-
age. In the discrete nodal transport method (DNTM), the
node-interior average angular flux is usually expanded in
terms of Legendre polynomials. Here, their spatial depen-
dence is represented by a quadratic polynomial expansion
as

�wm
x ðxÞ ¼

X2

i¼0

�wm
xihiðxÞ ð10Þ

QxðxÞ ¼
X2

i¼0

QxihiðxÞ ð11Þ

where hi(x) = {1, x, x2 + 2x/15 � 1/18}, and the polynomi-
als hi(x) form an orthogonal set with respect to the weight
function ys(x)

Z 1=3

�2=3

ysðxÞhiðxÞhjðxÞdx ¼ 0; for i 6¼ j ð12Þ

This polynomial expansion technique allows us to treat
the multi-group formulation with reasonable accuracy.

The biggest difficulty of the nodal transport method in a
triangular geometry is the spatial modeling of a transverse-
leakage with high-leakage. In the original DNTM, a flat
approximation is used for the spatial distribution of trans-
verse-leakage and calculated accurately even in case of the
large mesh widths.

We developed a new spatial model for transverse-leak-
age in the nodal method to describe the accurate spatial
distribution. The spatial distribution of the node-interior
flux is approximated by a binary quadratic polynomial
expansion in the computational coordinates

wmðx; yÞ ¼ aðx2 þ y2Þ þ bxþ cy þ d ð13Þ
The coefficients a, b, c, d can be derived from the values

of three surface average angular fluxes �wm
x , �wm

u , �wm
v and the

nodal averaged angular flux �wm. Inserting the coordinate
values of three vertexes (see Fig. 1) into Eq. (13), one
obtains three corner-point fluxes
wm
px ¼ 5ð�wm

u þ �wm
v Þ=3� �wm

x =3� 2�wm

wm
pu ¼ 5ð�wm

v þ �wm
x Þ=3� �wm

u =3� 2�wm

wm
pv ¼ 5ð�wm

x þ �wm
u Þ=3� �wm

v =3� 2�wm

ð14Þ

Using wm
px, wm

pv,
�wm

u and wm
px, wm

pu, �wm
v , two quadratic poly-

nomials of wm
u ðxÞ and wm

v ðxÞ are constructed, respectively.
Then the spatial distribution of transverse-leakage (see
Eq. (6)) is expressed by

Lrm
x ðxÞ ¼ ðLrm

x0 þ Lrm
x1xþ Lrm

x2x2Þ=
ffiffiffi
3
p

ð15Þ
where

Lrm
x0 ¼

1

3
luð4�wm

u � wm
pxÞ þ

1

3
lvð4�wm

v � wm
pxÞ

Lrm
x1 ¼ 2luðwm

pv � �wm
u Þ þ 2lvðwm

pu � �wm
v Þ

Lrm
x2 ¼ 3luðwm

px þ wm
pv � 2�wm

u Þ þ 3lvðwm
px þ wm

pu � 2�wm
v Þ

Inserting Eqs. (10), (11) and (15) into Eq. (8), one
obtains

�wm
x ¼

X2

i¼0

P m
xiQxi þ

X2

i¼0

Rm
xiLrm

xi ð16Þ

where P m
xi ¼

ffiffi
3
p

lm
x

R 1=3

�2=3
ysðxÞhiðxÞe

�Rt
lm

x
ð1=3�xÞ

dx and Rm
xi ¼

�
ffiffi
3
p

lm
x

R 1=3

�2=3
xie
�Rt

lm
x
ð1=3�xÞ

dx.

Inserting Eqs. (10), (11) and (15) into Eq. (7) and apply-
ing the weighted residual method to Eq. (7), one obtains
the average angular flux moments �wm

xi for lm
x > 0

�wm
x0 ¼

X2

j¼0

F m
x0jQxj þ Gm

x0jLrm
xj

� �
ð17aÞ

�wm
xi ¼

X2

j¼0

F m
xijQxj þ Gm

xijLrm
xj

� �
; for i ¼ 1; 2 ð17bÞ

where F m
xij ¼ 1

lm
x Di

R 1=3

�2=3
hiðxÞdx

R x
�2=3

ysðx0Þhjðx0Þe
�Rt

lm
x
ðx�x0Þ

dx0,

Gm
xij ¼ � 1

lm
x Di

R 1=3

�2=3
hiðxÞdx

R x
�2=3
ðx0Þje�

Rt
lm

x
ðx�x0Þdx0

and Di ¼R 1=3

�2=3 ysðxÞfhiðxÞg2dx.

Similar substitutions into Eq. (9), the nodal interior
average angular flux moments for lm

x < 0 can be derived

�wm
x0 ¼

X2

j¼0

ðF m
x0jQxj þ Gm

x0jLrm
xjÞ þ H m

x0
�wm

x ð18aÞ

�wm
xi ¼

X2

j¼0

ðF m
xijQxj þ Gm

xijLrm
xjÞ þ H m

xi
�wm

x ; for i ¼ 1; 2 ð18bÞ

where F m
xij ¼ 1

jlm
x jDi

R 1=3

�2=3
hiðxÞdx

R 1=3

x ysðx0Þhjðx0Þe
� Rt
jlm

x j
ðx0�xÞ

dx0,

Gm
xij ¼ � 1

jlm
x jDi

R 1=3

�2=3
hiðxÞdx

R 1=3

x ðx0Þ
je
� Rt
jlm

x j
ðx0�xÞ

dx0; Hm
xi ¼ 1ffiffi

3
p

DiR 1=3

�2=3
hiðxÞe

� Rt
jlm

x j
ð1=3�xÞ

dx and Di ¼
R 1=3

�2=3
ysðxÞfhiðxÞg2dx.

Integration of the average angular flux moments over
angle yields



Fig. 2. Sweeping of triangular meshes.
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�/xi ¼
X

m

xm �wm
xi ð19Þ

where xm is a weight of the angular quadrature set. Fur-
thermore, the source moments Qi are calculated by

Qg
xi ¼

X
g0

Xg0�g

s

þ vg

keff

m
Xg0

f

( )
�/g0

xi ð20Þ

By the same procedure described above, the analogous
nodal coupling equations corresponding to the u and v

directions are derived, and �wm
u , �wm

v , �wm
ui,

�wm
vi, Qui and Qvi

are calculated.
Thus we have derived the nodal coupling equations and

the average angular flux moments corresponding to the x,
u, v directions. The nodal SN transport equation is calcu-
lated as follows: the average angular fluxes at the incoming
surfaces are first assumed and then the 0th-order average
angular flux moments in the intra-node and the average
angular fluxes at the outgoing surface are calculated. The
average angular fluxes at the outgoing surfaces are used
as the average angular fluxes at the incoming surfaces of
the next adjacent node. The nodal averaged angular fluxes
are calculated by averaging three 0th-order average angular
flux moments calculated in the x, u and v directions.
3. NEFD algorithm and its improvement

The standard algorithm of the nodal SN transport
method described in Section 2.3, requires a lot of memories
of the computer with increase of the mesh number and thus
impractical. The nodal-equivalent finite difference (NEFD)
method (Badruzzaman, 1985; Ikeda and Takeda, 1994)
reduces the computational time and the required memory,
while retaining the accuracy over the standard SN method.
The NEFD algorithm has same advantages for the triangu-
lar geometry.

Sweeping from the initial physical domain in the direc-
tion of the angle Xm, seen in Fig. 2, there are two incoming
surfaces in a triangle 1, while one incoming surface in a tri-
angle 2. Here, the NEFD algorithm would be used in case
of two surfaces of a triangle being incoming surfaces as
described in Section 3.1, while the improved NEFD algo-
rithm is employed when one surface of a triangle is an
incoming surface and this case is described in Section 3.2.

3.1. NEFD algorithm in case of two incoming surfaces

In the NEFD algorithm, Eqs. (16)–(18) are reformu-
lated. Let us consider the surface flux in the x direction
being unknown, one obtains the following equation by
eliminating Qx0 from Eqs. (16) and (17a)

�wm
x ¼ am

x
�wm þ bm

x ð21Þ

where am
x ¼

P m
x0

F m
x00

and bm
x ¼

P2
i¼1ðP m

xi � F m
x0ia

m
x ÞQxi

þ
P2

i¼0ðRm
xi � Gm

x0ia
m
x ÞLrm

xi.
The neutron balance equation in a regular triangle is

2lm
x

�wm
x þ 2lm

u
�wm

u þ 2lm
v

�wm
v þ Rt

�wm ¼ Q ð22Þ
Substituting Eq. (21) into Eq. (22), one obtains the

nodal averaged flux

�wm ¼ Q� 2lm
x bm

x � 2lm
u

�wn
u � 2lm

v
�wm

v

Rt þ 2lm
x am

x

ð23Þ

Here, �wm involves only the previous-iteration source
moments and the incoming surface average fluxes.

Eliminating Qx0 from Eqs. (17a) and (17b), one obtains
the high-order average flux moments for lm

x > 0

�wm
xi ¼ um

xi
�wm þ vm

xi; for i ¼ 1; 2 ð24Þ

where um
xi ¼

F m
xi0

F m
x00

, vm
xi ¼

P2
j¼1ðF m

xij � F m
x0ju

m
xiÞQxj þ

P2
j¼0

�ðGm
xij � Gm

x0ju
m
xiÞLrm

xj.

Similar equations for lm
x < 0 can be obtained by elimi-

nating Qx0 from Eq. (18a) and (18b)

�wm
xi ¼ um

xi
�wm þ vm

xi þ wm
xi

�wm
x ; for i ¼ 1; 2 ð25Þ

where the expressions of um
xi and vm

xi are the same as those in
Eq. (24) and wm

xi ¼ Hm
xi � um

xiH
m
x0.

In the present NEFD algorithm, the nodal averaged
angular flux is obtained from Eq. (23). And then using
the updated nodal averaged angular flux, the average angu-
lar flux at the outgoing surface and high-order average
angular flux moments in the x, u, v directions are calculated
from Eqs. (21), (24) and (25).

3.2. Improved NEFD algorithm in case of one incoming

surface

In Fig. 2, the direction in the angle of Xm is paralleled
with the common edge between the triangle 3 and triangle
4. According to the expression of lm

x defined in Eq. (4), the
component in the direction of the angle Xm is zero in the
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common edge. In the computation, we take the component
in the common edge of the triangle 3 being �10�7, and
10�7 in that of the triangle 4. Here, 10�7 means a suffi-
ciently small number. The triangle 3 has two incoming sur-
faces and thus the NEFD algorithm could be used. In the
triangle 4, only one surface is an incoming surface and
the NEFD algorithm does not converge with decrease of
the mesh width.

Consider the triangle 4, we transform it into a regular
triangle in the computation coordinates (see Fig. 3) and
suppose that �wm

x and �wm
u are unknown and lm

u ¼ 10�7. Then
the corner-point fluxes wm

px, wm
pu and the surface average

angular flux �wm
v are given by the previous calculations at

two adjacent nodes, and lm
x ¼ �lm

v . In the u direction,
the Eq. (21) will be

�wm
u ¼

X
t

�wmþQu1=3þQu2=10þLrm
u0�2Lrm

u1=3þLrm
u2=9

 !,
Rt

ð26Þ
Ignoring the high-order average source moments and

inserting Eqs. (14) and (15) into Eq. (26), yields

�wm
u ¼ A�wm

u þ C ð27Þ
where A ¼ 5lm

v =ð3RtÞ, C ¼ ðRt
�wm þ lm

v ð5�wm
v =3� �wm

x =
3� 2�wm � wm

pxÞÞ=Rt and lm
v ¼ ððy2 � y1Þlm þ ðx1 � x2ÞgmÞ=

2D. For lm
u ¼ 10�7, �wm and �wm

x can be calculated accu-
rately through Eqs. (15), (21) and (23), and then C is given.
Suppose Dx is mesh width, y2 � y1 = Dx, x1 � x2 = Dx,
D = Dx2/2 and lm = gm, and then lm

v ¼ 2lm=Dx and
A = 10lm/(3DxRt). The Eq. (27) converges only for
jAj < 1. So we can derive Dx > 10jlmj/(3Rt). In other
words, the iteration of Eq. (27) would not converge when
the mesh width is less than 3.3 mean free paths.

In order to converge the iteration, the improved NEFD
algorithm is used when one surface of a triangle is an
Fig. 3. Regular triangle in case of one incoming surface.
incoming surface. The average angular fluxes at the two
outgoing surfaces are expressed in terms of the nodal aver-
aged angular flux, higher order average source moments,
the average angular flux at the incoming surface, and two
known corner-point fluxes through the insertion of Eqs.
(14) and (15) into Eq. (21). Addition of Eq. (22) to the
equations for two outgoing surfaces resulted above, the
set of ternary linear equations is given and the average
angular fluxes at the two outgoing surfaces and the nodal
averaged angular flux could be obtained. Analogously,
the average angular flux moments of high-order in the x,
u, v directions are calculated using the updated nodal aver-
aged angular flux and two updated average angular fluxes
at the outgoing surfaces from Eqs. (24) and (25) shown
in Section 3.1.

4. Numerical results

The discrete nodal transport method for a 2D triangular
geometry (DNTR) developed in the paper has been applied
successfully to a number of benchmark problems. For
checking its computational accuracy and efficiency, the
four problems were solved. The capability of this method
for the unstructured geometry was investigated applying
it to the fifth benchmark problem. Finally, a benchmark
problem with hexagonal assemblies was solved.

4.1. Calculation of keff in a homogeneous slab

This benchmark problem of a slab with one-energy
group and vacuum boundary conditions was solved by Ste-
panek (1981) in which the thickness of the slab is given to
be 10 cm. To simulate the infinite extension of the slab in
the y direction, 10 cm width and reflective boundary condi-
tions are used. In the DNTR code, the triangular meshes
are obtained by dividing a rectangular mesh used in the
DNTM code into two triangular meshes.

The eigenvalues as a function of the mesh width calcu-
lated by the four kinds of methods are shown in Table 1
Table 1
Eigenvalue for homogeneous slab

Na Ka ANISN DNTM DNTR DOT4.2

keff Ka keff CPU
time/
s

keff CPU
time/
s

keff CPU
time/
s

4 5 0.94178 2 0.95184 0.03 0.94569 0.03 – –
10 0.94956 5 0.95192 0.25 0.95126 0.08
20 0.95147 10 0.95192 0.98 0.95180 0.34
40 0.95194 20 0.95192 3.94 0.95190 1.36

8 5 0.94280 2 0.95300 0.12 0.94707 0.06 – –
10 0.95068 5 0.95308 0.80 0.95249 0.27 0.94236 0.44
20 0.95257 10 0.95309 3.20 0.95296 1.06 0.95019 0.50
40 0.95303 20 0.95309 13.12 0.95302 4.23 0.95208 1.88

Reference 0.95348

a N means the order of angular quadrature set and K is the number of
meshes in the x direction.



Fig. 4. Calculated eigenvalues and their dependence on mesh width.
Fig. 6. Flux distribution along the x axis.

Table 2
Comparison of results for the Issa problem

Method DNTR DNTR DNTR DOT4.2

Mesh widths (cm) 0.1 0.25 0.5 0.05
keff 1.678047 1.678043 1.678023 1.67790
CPU time (s) 5.422 0.797 0.234 15.797
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and Fig. 4, and also their execution times are shown in
Table 1. The results of the ANISN code are taken from
Stepanek (1981). From Table 1 and Fig. 4, it can be seen
that the DNTR code converges more speedily than other
codes. Even if the mesh width of four times larger than that
of the ANISN and DOT4.2 codes is used in the DNTR
code, the same eigenvalue of 0.9525 is obtained, and the
execution time of the DNTR code is just one-seventh of
the DOT4.2 code. And even the mesh numbers in the
DNTR code are twice than those of the DNTM code,
but with same mesh width, the execution time is still less
than the DNTM code because the iterative scheme of the
DNTR code reduces the required memories and computa-
tional times significantly.

4.2. Issa test problem

This benchmark problem is a one-group two-region sys-
tem, and the cross-sections are given by Issa et al. (1986).
Fig. 5 gives the geometry of the problem. Only the right
side has a vacuum condition while the other sides are
reflecting boundary conditions. The triangular meshes used
in the DNTR code are obtained by dividing a rectangular
mesh used in the DOT4.2 code into two triangular meshes.
Fig. 5. Geometry of Issa benchmark problem.
Conventional S8 angular quadrature is selected in this
problem.

The distributions of flux along the x axis, calculated by
the DNTR and DOT 4.2 codes with different mesh widths,
are shown in Fig. 6. In the figure, the fluxes are normalized
so that

R
mRf UdV ¼ 1. From Fig. 6, the calculated results

with different mesh widths by the DNTR code agree well
with that of the DOT4.2 code, even the mesh width is ten
times larger than that of the DOT4.2 code. The reference
eigenvalue is 1.6784. In Table 2, the calculated eigenvalues
and execution times in two codes are compared, in which
the same precision of the eigenvalue is obtained in both
Fig. 7. Geometry of LWR assembly.



Fig. 8. The neutron fluxes and their dependence on the mark numbers of
the cells.

Fig. 9. Geometry of IAEA benchmark problem.

Table 4
Results of the unstructured mesh problem

Method The fluxes of fast
neutron

The fluxes of thermal
neutron

keff

Fuela Water Fuel Water

MG-MCNP3B 1.0 1.80023 0.55211 1.08581 1.174655
TEPFEM 1.0 1.82777 0.55749 1.10730 1.171747
DNTR 1.0 1.82734 0.55759 1.10504 1.174551

a Normalization: the fast flux in fuel zone is 1.0.
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cases, but the execution time of the DNTR code is 20 times
shorter than the case of the DOT4.2 code when the mesh
width of DNTR is 0.25 cm.

4.3. 4 · 4 LWR assembly

The LWR fuel assembly with 25 cells (see Fig. 7) and
reflection boundary conditions is treated using the conven-
tional S8 angular quadrature and the cross sections given
by Stepanek et al. (1983). The triangular meshes used in
Table 3
Comparison of results for IAEA benchmark problem

Method Average fluxes in various regionsa keff CPU
time/sZone 1 Zone 2 Zone 3 Zone 4 Zone 5

SURCU 0.01686 0.000125 0.000041 0.000295 0.000791 1.0083 –
FELICIT 0.01685 0.000127 0.000042 0.000300 0.000797 1.0069 –
TEPFEM 0.01686 0.000125 0.000033 0.000297 0.000784 1.0079 115.438
DOT4.2 0.01686 0.000124 0.000037 0.000294 0.000789 1.0088 126.922
DNTR 0.01686 0.000125 0.000035 0.000295 0.000791 1.0085 22.953

a The fluxes are normalized so that
R

mRf UdV ¼ 1.
the DNTR code are obtained by dividing a rectangular
mesh used in the DNTM code into two triangular meshes.

The eigenvalues obtained by the DNTR and DNTM
codes are 1.212519 and 1.212703, respectively. The relative
Fig. 10. Unstructured mesh.



Fig. 11. 2D-KNK benchmark problem.
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error is �0.015%. Corresponding execution times of two
codes are 0.91 s and 1.80 s. The DNTR code is still faster
than the DNTM code. The fluxes and their dependence
on the mark numbers of the cell are illustrated in Fig. 8,
in which the abscissa axis is the mark number of the cell.
The flux is normalized by

R
mRf UdV ¼ 1. The maximum

relative error in all labeled cells is 0.572%. It can be found
this code has the same precision with the DNTM code.

4.4. IAEA light water reactor

The simplified reactor with the vacuum boundary condi-
tions, consisting of two large source zones and two large
absorber zones surrounded by the light water (see Fig. 8),
Table 5
Percentage errors of the region-averaged group fluxes for the 2D KNK bench

Region Rods-in

Reference (TWOHEX-96D) TWOHEX-6D

Group 1

Test zone 3.90232E�02 0.48
Driver without moderator 2.63616E�02 0.09
Driver with moderator 1.80327E�02 0.22
Reflector without moderator 7.38592E�03 0.94
Control rod 2.34097E�02 1.01
Control rod follower – –

Group 2

Test zone 2.86349E�02 0.24
Driver without moderator 1.91338E�02 �0.17
Driver with moderator 1.27865E�02 0.25
Reflector without moderator 7.13720E�03 �0.04
Control rod 1.71486E�02 1.14
Control rod follower – –

Group 3

Test zone 4.94818E�03 �0.76
Driver without moderator 5.05859E�03 �0.47
Driver with moderator 6.69590E�03 �0.13
Reflector without moderator 4.58171E�03 0.16
Control rod 3.11700E�03 1.98
Control rod follower – –

Group 4

Test zone 1.57957E�04 �4.10
Driver without moderator 8.75407E�04 �0.37
Driver with moderator 3.32370E�03 �0.51
Reflector without moderator 4.97038E�03 0.84
Control rod 1.88818E�04 3.79
Control rod follower – –
Keff ek (%) 1.00941 �0.482
is treated in which we use the conventional S4 angular
quadrature and unstructured triangular meshes with the
size and shape in random.

Results are compared in Table 3, in which the TEPFEM
(Cao and Wu, 2004) code of a finite element spherical-har-
monics method was also applied to the unstructured
meshes. Here, the angular variable of the TEPFEM code
is expanded by P3. The mesh widths of the TEPFEM,
DOT4.2 and DNTR codes are 4 cm, 1 cm and 4 cm, respec-
tively. From Table 3, the results calculated by the DNTR
code are in a good agreement with the other four codes,
and execution times of the DOT4.2 and TEPFEM codes
are about 5 times longer than that of the DNTR code.

4.5. Problem with unstructured meshes

A problem with non-regular geometry (Cao and Wu,
2004) is adopted to confirm the capability of the DNTR
code to the unstructured triangular meshes. It contains a
fuel rod surrounded by the light water as shown in
Fig. 9. The cross sections are the same with the LWR
assembly problem in Section 4.3. Conventional S6 angular
quadrature is used for this problem. The mesh width of the
DNTR code is 0.15 cm.

Table 4 summarizes results obtained by various codes.
The results of the DNTR code show a good agreement
mark problem

Rods-out

DNTR S4 Reference (TWOHEX-96D) TWOHEX-6D DNTR S4

0.19 3.13200E�02 0.11 0.19
�0.07 2.33354E�02 �0.02 �0.17
�0.17 1.53025E�02 �0.06 �0.04

0.32 6.03135E�03 0.37 0.29
�0.37 – – –
– 2.32517E�02 0.28 �0.32

0.11 2.70066E�02 0.08 0.05
�0.03 1.99348E�02 �0.20 �0.20
�0.10 1.22778E�02 0.10 0.01
�0.07 6.23672E�03 �0.54 �0.02
�0.12 – – –
– 2.14954E�02 0.10 �0.06

0.22 7.57104E�03 0.03 �0.08
�0.06 7.36266E�03 0.52 0.02
�0.13 7.00912E�03 �0.07 �0.01
�0.11 4.16147E�03 �0.48 �0.06
�0.10 – – –
– 8.43477E�03 �0.24 �0.02

1.43 7.97467E�04 �0.80 �0.45
�0.02 1.55391E�03 2.39 0.27
�0.04 3.55912E�03 �0.44 0.00

0.19 4.50078E�03 0.23 0.27
�1.07 – – –
– 2.40342E�03 �2.68 �0.10
�0.027 1.30945 �0.096 �0.047
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with the reference results, and verify that the DNTR code
is more efficient in solving the transport problem of the
non-regular geometry.

4.6. 2D KNK benchmark problem

The KNK problem is a four-group, eight-ring fast bree-
der reactor (FBR) with 169 assemblies (Kim and Cho,
1996). The layout of this reactor problem is shown in
Fig. 10. Two configurations have been studied, which con-
trol rods out and in. Vacuum boundary conditions are
applied at all outer boundaries of the problem and S4 angu-
lar quadrature is used. The triangular meshes used in the
DNTR code are obtained by dividing a hexagonal mesh
into six triangular meshes (Fig. 11).

Table 5 shows the results of region-averaged group
fluxes and keff comparisons of TWOHEX-96D , TWO-
HEX-6D and the present method. The fluxes are normal-
ized so that

R
mRf UdV ¼ 1. The eigenvalues of DNTR

agree well with the reference in both cases, with the differ-
ence being less than 0.05% Dk. On the other hand, the dif-
ference of TWOHEX-6D is �0.482% Dk in the rods-in case.
From Table 5, the results of region-averaged group fluxes
are also better than those of TWOHEX-6D.
5. Conclusions

The advanced nodal method for the solution of the
multi-group neutron transport equation in two-dimen-
sional triangular geometry is developed and evaluated.
Before the transverse integration is applied, we transform
the arbitrary triangles into regular triangles using coordi-
nate transformation. In the regular triangular node, the
equations of the x, u, v directions can be derived analo-
gously and the nodal average angular flux and three sur-
face average angular fluxes are equaled with those of the
arbitrary triangular node. The angular distributions of
intra-node neutron fluxes and its transverse-leakage are
represented by the SN quadrature set. The spatial distri-
butions of neutron flux and source in a regular triangle
are given approximately by an orthogonal binary qua-
dratic polynomial, and the spatial expansion of trans-
verse-leakage is approximated by a second-order
polynomial. To establish a stable and efficient iterative
scheme, the improved nodal-equivalent finite difference
algorithm is used.
The nodal method is applied to several two-dimensional
benchmark problems. The results demonstrate the higher
capability of the method to yield the very accurate results
in smaller computing times than those required by the stan-
dard finite difference method and the finite element spheri-
cal-harmonics method.
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