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This paper describes the wavelet expansion method for discretizing the angular and spatial variables in
the neutron transport equation. Three special features are introduced: (a) the variation scheme is applied
using the Daubechies scaling function as the trialing and weighting functions, (b) the corresponding
expansion sequence is designed for the sweeping of nodes, and (c) the boundary conditions and interface
conditions are expressed using the wavelet expansion. The numerical results of several benchmarks dem-
onstrate that the new method is feasible for the spatial-angular discretization of neutron transport equa-
tion. It is accurate and suitable for solving the problems with large flux gradient.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Many numerical methods have been developed to solve the
neutron transport equation in past decades, such as the finite dif-
ference method (FDM), the finite element method (FEM) and the
nodal method (Lewis and Miller, 1984). In this paper, we introduce
a new method called the wavelet expansion method (WEM) to
solve the first-order neutron transport equation. In this method,
the flux distribution is represented by the wavelet expansion and
the Daubechies scaling functions are adopted as the basis function.

The wavelets are well developed in recent years and widely
used in the fields of science and engineering. Daubechies (1992)
constructed a kind of wavelets based on the multi-resolution anal-
ysis (MRA) theory and named them ‘the Daubechies wavelets’.
These wavelets possess the properties of orthonormality and com-
pact support. Cho and Park (1996) introduced them in solving the
neutron diffusion equation. Nasif et al. (1999, 2001) improved it by
using a new method to generate the connection coefficients and
the boundary condition. The wavelets were first introduced into
solving the neutron transport equation by Carron (1999) for the
angular discretization. Buchan et al. (2008a,b) developed this ap-
proach further and proposed a second generation type wavelet
expansion for the angular discretization.

The Daubechies wavelets were initially introduced into discret-
izing the angular variables of neutron transport equation by Cho
and Cao (2006). Zheng et al. (2009, 2010) improved it by applying
ll rights reserved.

x: +86 29 8266 7802.
g).
the Daubechies scaling function on the interval (Cohen et al., 1993)
as the basis function and proposed the decoupled angular discret-
ization scheme. Yang et al. (2010) introduced the Daubechies
wavelets into the resonance self-shielding calculation. Previous
studies indicated that the WEM method is advanced and attractive.
It possesses higher accuracy and can well handle the problems
suffering large graded distribution.

In this paper, the wavelet expansion method is extended to
discretize both the angular and spatial variables. For the angular
discretization, the same approaches are referred directly from
previous works. For the spatial discretization, new approaches
are proposed. The variation method is applied. The boundary con-
ditions and interface conditions are expressed using the wavelet
expansion. A sweeping scheme is proposed and the corresponding
sequence is appointed to determine the order that the wavelet
coefficients are solved. Several test problems are calculated to
demonstrate the accuracy and advantages of the new method.

In Section 2, the fundamentals of Daubechies wavelets and their
application in the angular discretization is reviewed. The spatial
discretizing process is presented in Section 3. The test results are
shown in Section 4 to demonstrate the effectiveness and accuracy
of the new method. Finally, Section 5 provides the conclusions to
close the paper.
2. Wavelet expansion in the angular domain

This paper uses the same angular discretization scheme as in
previous works (Zheng et al., 2009, 2010). To avoid duplication,
the detailed explanation is omitted in this paper. Some useful

http://dx.doi.org/10.1016/j.anucene.2011.12.018
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Fig. 2. Distribution of the Daubechies scaling function series on the interval (N = 4).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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properties and process applicable to this paper’s content are re-
viewed in this section.

2.1. Review of the Daubechies wavelets

The Daubechies wavelets (Daubechies, 1992) consist of the
Daubechies scaling function and wavelet function. In this paper,
only the Daubechies scaling function is used as the basis function,
which can be represented as:

wn;kðxÞ ¼ 2n=2wð2nx� kÞ ð1Þ

The Daubechies wavelets are orthonormal and compactly sup-
ported as:

wn;kðxÞ ¼
X2Nþ2k�1

j¼2k

cj�2kwnþ1;jðxÞ; support ðwn;kÞ

¼ ½2�nk;2�nðkþ 2N � 1Þ� ð2Þ

andZ
wn;kðxÞwn;lðxÞdx ¼ dkl ð3Þ

Here, N is the Daubechies order, n is the dilation order and also the
expansion order used in the latter sections. The coefficients c are
called the Daubechies coefficients (1992). Fig. 1 shows the scaling
functions with different Daubechies order. In order to generate
the derivative of wavelets, the scaling function with higher
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Fig. 1. Distribution of the Daubechies scaling function (a) for N = 2 (b) for N = 4.
Daubechies order is used for its better continuity. The wavelets on
the interval are used to avoid the ‘edge effect’ (Zheng et al., 2009,
2010) and get accurate simulation near the boundary or interface.
Fig. 2 indicates the distribution of wavelets on the normalized
interval.

According to Eq. (1), the Daubechies scaling function has no ex-
plicit expression. The discrete values are obtained by the numerical
method. Using the definition in Eqs. (1) and (3), the values of scal-
ing functions at the integer points are generated as (taking N = 2 for
example, w(0) = w(3) = 0 for the property of compact support):

wð1Þ ¼ c1wð1Þ þ c0wð2Þ ð4aÞ
wð2Þ ¼ c3wð1Þ þ c2wð2Þ ð4bÞ

An iterative method is applied to solve Eq. (4). The values at 1/2
can be obtained using Eq. (2). Then, other values at 1/4, 1/8 and 1/
2n are obtained in the same way recursively.

2.2. Decoupled angular discretization

A decoupled angular discretization scheme has been proposed
(Zheng et al., 2009, 2010). The angular domain is divided into sev-
eral sub-domains as shown in Fig. 3. The polar and azimuthal vari-
ables are discretized separately in each sub-domain.

The two-dimensional multi-group neutron transport equation
is:

Xx
@/gðr;XÞ

@x
þXy

@/gðr;XÞ
@y

þ Rt;g/gðr;XÞ ¼ qgðr;XÞ ð5Þ
First angular 
subdomain

Second angular 
subdomain

Third angular 
subdomain

Fourth angular 
subdomain

Fig. 3. Definition of angular subdomains in the X–Y geometry.



Fig. 4. Configuration of the slab geometry.
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where / is the flux and q is the source distribution. In this paper,
only the X–Y geometry is considered. Thus,

Xx ¼ ð1� l2Þ1=2 cos u ð6aÞ
Xy ¼ ð1� l2Þ1=2 sin u ð6bÞ

where l is the cosine of polar variable and / is the azimuthal
variable.

The polar variable is discretized using the discrete ordinate
method as:Z

Dlm

Xx
@/gðr;XÞ

@x
þXy

@/gðr;XÞ
@y

þ Rt;g/gðr;XÞ � qgðr;XÞ
� �

dl

¼ 0 ð7Þ

And the discretized form can be written as:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m

q
cos u

@/g;mðr;uÞ
@x

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m

q
sin u

@/g;mðr;uÞ
@y

þ Rt;g/g;mðr;uÞ ¼ qg;mðr;uÞ ð8Þ

whereZ
Dlm

/gðr;XÞdl ¼ xm/g;mðr;uÞ ð9Þ

The azimuthal variable is expanded by the Daubechies scaling
function as:

/g;mðr;uÞ ¼
Xnp

p¼1

/g;mpðrÞwpðnÞ; n ¼ 2
p

u; and n 2 ½0;1Þ ð10Þ

Finally, the angularly discretized equation is obtained as:

Xnp

p¼1

akDx;mpp0
@/k

g;mp

@x
þbiDy;mpp0

@/k
g;mp

@y

 !
þRt;g/

k
g;mp0 ¼qk

g;mp0 ; p0 ¼1;np

ð11Þ

where k is the index of angular sub-domain, ak and bk are appointed
as:

a1 ¼ �1; a2 ¼ 1; a3 ¼ 1; a4 ¼ �1 ð12Þ
b1 ¼ �1; b2 ¼ �1; b3 ¼ 1; b4 ¼ 1 ð13Þ

and the coefficients are defined as:

Dx;mpp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m

q Z
cos

p
2

nwpðnÞwp0 ðnÞdn ð14Þ

Dy;mpp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m

q Z
sin

p
2

nwpðnÞwp0 ðnÞdn ð15Þ

qg;mp0 ¼
Z 1

0
wp0 ðnÞSg;mðr; nÞdn ð16Þ

The integrations in Eqs. (14)–(16) are calculated using the trap-
ezoidal method.

3. Wavelet expansion in the spatial domain

The spatial discretization scheme is deduced in this section.
Since the angularly discretized equations as in Eq. (11) are coupled
by a series of coefficients /k

g;mp, the iterative method is applied to
decouple the coefficients as:

akDx;mp0p0
@/k;l

g;mp0

@x
þ biDy;mp0p0

@/k;l
g;mp0

@y
þ Rt/

k;l
g;mp0 ¼ qk;l�1

g;mp0

�
Xnp

p¼1;p–p0
akDx;mpp0

@/k;l�1
g;mp

@x
þ bkDy;mpp0

@/k;l�1
g;mp

@y

 !
¼ q0k;l�1

g;mp0 p0 ¼ 1;np

ð17Þ
where l denotes the iteration index.

3.1. Variation of the neutron transport equation

The variation method is used on the nodes as in Fig. 4. In the
variation process, the weighting function /0 is multiplied on both
sides of Eq. (17). Then, the integration is done as:
Z by

ay

Z bx

ax

akDx;mp0p0
@/k

g;mp0

@x
þbkDy;mp0p0

@/k
g;mp0

@y
þRt;g/

k
g;mp0 �qk

g;mp0

 !
/0dxdy

¼0; p0 ¼1;np ð18Þ

In this paper, the trialing and weighting functions are both the
Daubechies scaling functions in the tensor product form as:

/k
g;mp0 ðx; yÞ ¼

Xnpi

i¼1

Xnpj

j¼1

/k
g;mp0 ;ijwiðxÞwjðyÞ ð19Þ

/0ðx; yÞ ¼ wi0 ðxÞwj0 ðyÞ ð20Þ

where npi and npj are the total number of expansion coefficients,
determined by the expansion order in the X- and Y-dimension,
respectively.

3.2. Deduction of the spatial discretization

Generally, a given node should be transferred into the normal-
ized node first. The normalized variables are expanded by the
Daubechies scaling functions as:Z 1

0

Z 1

0

Xnpi

i¼1

Xnpj

j¼1

aiDx;mp0p0/
k
g;mp0 ;ijwjðnyÞ

dwiðnxÞ
dnx

�

þbiDy;mp0p0/
k
g;mp0 ;ijwiðnxÞ

dwjðnyÞ
dny

þ Rt/
k
g;mp0 ;ijwiðnxÞwjðnyÞ � q0kg;mp0

�
� wi0 ðnxÞwj0 ðnyÞjJðnx; nyÞjdnxdny ¼ 0; i0 ¼ 1;npi;

j0 ¼ 1;npj; p0 ¼ 1;np ð21Þ

where |J(nx, ny)| is the Jacobian matrix, defined as:

jJðnx; nyÞj ¼
@x
@nx

@y
@nx

@x
@ny

@y
@ny

�����
����� ð22Þ

Considering the orthonormality of Daubechies scaling function,
the variation can be simplified as:

akDyDx;mp0p0

Xnpi

i¼1

/k
g;mp0 ;ij0

Z 1

0

dwiðnxÞ
dnx

wi0 ðnxÞdnx

þ bkDx
Xnpj

j¼1

Dy;mp0p0/
k
g;mp0 ;i0j

Z 1

0

dwjðnyÞ
dny

wj0 ðnyÞdny þ Rt/g;mp0 ;i0 j0DxDy

¼ q0kg;mp0DxDy
Z 1

0
wi0 ðnxÞdnx

Z 1

0
wj0 ðnyÞdny; i0 ¼ 1;npi;

j0 ¼ 1;npj; p0 ¼ 1;np ð23Þ

where Dx and Dy denote the size of original nodes. The derivative of
Daubechies scaling function is calculated using:

dwiðnxÞ
dnx

����
nx¼x0

¼ wiðx0 þ d=2nþ1Þ � wiðx0 � d=2nþ1Þ
d=2n ð24aÞ
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and

dwjðnyÞ
dny

����
ny¼y0

¼
wjðy0 þ d=2nþ1Þ � wjðy0 � d=2nþ1Þ

d=2n ð24bÞ

With all the coefficients in Eq. (23) known, the wavelet expan-
sion coefficients can be obtained by solving the matrix:

Kw ¼ b ð25Þ

where,

Ki;j ¼ akDyDx;mp0p0Cx;ii0/
k
g;mp0 ;ij0 þ bkDyDx;mp0p0Cy;jj0/

k
g;mp0 ;i0j

þ Rt;g/
k
g;mp0 ;i0 j0DxDy; i ¼ i0; j ¼ j0

0; else

(
ð26Þ

w ¼ ½/k
g;mp0 ;11;/

k
g;mp0 ;21; . . . ;/k

g;mp0 ;npinpj�
T ð27Þ

and

b ¼ ½E11q0kg;mp0 ; E21q0kg;mp0 ; . . . ; Enpinpjq0kg;mp0 �
T ð28Þ

with,

Cx;ii0 ¼ Dy
Z 1

0

dwiðnxÞ
dnx

wi0 ðnxÞdnx and Cy;jj0 ¼ Dx
Z 1

0

dwjðnyÞ
dny

wj0 ðnyÞdny

ð29Þ

Eij ¼ DxDy
Z 1

0
wiðnxÞdnx

Z 1

0
wjðnyÞdny ð30Þ
3.3. Boundary condition in the wavelet expansion form

In this paper, two typical boundary conditions are considered:
(i) The reflective boundary condition, which is defined as:
/gðrb;XÞ ¼ /gðrb;X
0Þ; X � n < 0 ð31Þ

where X0 is the reflective angle of X. For the angular discretization,
the boundary condition is given as:

/k
g;mpðx; yÞ ¼ /kref

g;mpðx; yÞ; p ¼ 1;np ð32Þ

After expanding the spatial variables, the boundary condition is
transformed to be:X

i

X
j

/k
g;mp;ijwið0ÞwjðyÞ ¼

X
i0

X
j0

/kref

g;mp;i0 j0wi0 ð0Þwj0 ðyÞ ð33Þ

Here, the left boundary is taken for instance.
Since the basis functions are not fully symmetric, it may lead

the flux simulation in the spatial domain to be distorted in the
sweeping of nodes. Especially in the two-dimensional calculation,
this phenomenon sometimes induces the divergence of iteration.
To avoid it, the corresponding expansion sequence is designed as
in Table 1.
Table 1
Expansion sequence in the quadrant.

Quadrant Expansion sequence

X-dimension Y-dimension

1 i = 1,npi j = npj,1
2 i = 1,npi j = 1,npj
3 i = npi,1 j = npj,1
4 i = npi,1 j = 1,npj
Based on the expansion sequence, the boundary condition is fi-
nally represented as:

X
i

/k
g;mp;ijwið0Þ¼

X
i0

/kref

g;mp;i0 j0wi0 ð0Þ
X

j0
wj0 ðnyÞ

Z 1

0
wj0 ðnyÞwjðnyÞdny ð34Þ

where j is determined as in Table 1. The trapezoidal method is used
here to calculate the integrations.

(ii) The vacuum boundary condition, which is defined as:

/gðrb;XÞ ¼ 0; X � n < 0 ð35Þ

Using similar treatments, the boundary condition is finally
transformed as:X

i

/k
g;mp;ijwið0Þ ¼ 0 ð36Þ

where j is the same with the one in Eq. (34).
The wavelet expansion coefficients are calculated node by node

as illustrated in Fig. 5. The interface condition should be deter-
mined to make the flux continuous along the sweeping direction
as:

/gðri;XÞ ¼ /gðri�1;XÞ ð37Þ

where ri and ri�1 denote the interface for node (i, j) and (i � 1, j),
respectively. The same treatments are applied to generate the inter-
face condition, and finally it is rewritten as:X

i

/k
g;mp;ijwið0Þ ¼

X
i0

/k
g;mp;i0 j0wi0 ð1Þ

X
j0

wj0 ðnyÞ

�
Z 1

0
wj0 ðnyÞwjðnyÞdny ð38Þ

where the left side of node (i, j) is taken for instance and j is also
determined as in Table 1.

Combining the boundary condition and interface condition with
the matrix required the replacement of some original equations. In
this paper, we select the equations at the beginning or ending line
in every block of the matrix. For the right and top sides, the ending
line is replaced while the beginning one is replaced for the left and
bottom sides. The modification is generally illustrated in Fig. 6. The
Doolittle method is used to solve the matrix.

4. Numerical results

To find the capability of wavelet expansion method (WEM) in
the angular and spatial discretization, several test problems are
calculated in this section. All the calculations in this paper are car-
ried out by PC (Intel Core2 Duo CPU E6750, 2.66 GHz, 2G
memories).

4.1. Issa problem

This is a one-dimensional eigenvalue problem with core and
shield regions (Issa et al., 1986). The cross section and geometry
description are given in Fig. 7. The results are compared with the
reference from ANISN using S16 approximation (Engle, 1973). Table
2 shows the results of eigenvalue (Keff). For the angular variable,
the expansion order is n = 4, i.e. 16 unknowns in a quadrant are
used. For further comparison, the results of finite difference meth-
od (FDM) with the same angular discretization are employed in
this paper. Solutions using different expansion order in the spatial
discretization are compared.

As in Table 2, the result from low order spatial expansion is accu-
rate enough for this problem. Higher order can further improve the
results, however, significantly reduce the efficiency. Fig. 8 illus-
trates the comparison of flux distribution in the medium. In the
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Fig. 7. Description of the Issa problem.

Fig. 8. Comparison of the flux distribution in Issa problem.
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Fig. 5. Sweeping sequence of the nodes.
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Fig. 6. The modification of matrix for the combination of boundary and interface
condition (a) for the left and bottom sides (b) for the right and top sides.
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WEM method, the flux distribution is expressed in the continuous
form rather than the discrete values in meshes. In the comparison,
the calculated flux distribution agrees well with the reference.

4.2. Reed cell problem

This is a fixed source problem with five different regions
(Buchan et al., 2005). It is calculated to test the capability of spatial
wavelet expansion in handling the problems with large flux
gradient. Fig. 9 illustrates the geometry and cross section of the
Table 2
Comparison of the eigenvalue of Issa problem.

Reference Wavelet expansion order

n = 3a

Keff 1.6784 1.6783
Error/% – �0.006
CPU time/s – 2.9

a The number of unknowns is 2n, i.e. 8 for n = 3 and 16 for n = 4 in each nod
problem. Since pure absorption, vacuum and strong scattering re-
gions are all considered in this problem, the flux exhibits strong
heterogeneous.

Fig. 10 illustrates the flux distribution in different regions. The
angular expansion order is n = 3 (8 angular unknowns in each
quadrant) and the FDM calculation is done to provide the reference
results. In the FDM calculation, 80 and 400 meshes are used,
respectively. It shows that the large gradient of flux distribution
requires very fine mesh division, while the result from coarse mesh
division suffers obviously distortion as illustrated in Fig. 10.

In the spatial wavelet expansion solution, five nodes are divided
according to the five regions. Different expansion order is appointed
in different regions. The expansion order n = 4 (16 unknowns in a
node) is used in the second region and n = 3 (8 unknowns in a node)
is used in others. Totally, 48 unknowns should be calculated. Com-
pared with the FDM method, the WEM method performs better.
No visual distortion can be viewed in the simulation. Compared with
the fine mesh FDM method, the WEM method costs only a half of the
computational time (0.92 s for the WEM calculation and 2.5 s for the
fine mesh FDM calculation).

4.3. Simplified reactor core problem

This is a two-dimensional eigenvalue problem derived from a
simplified reactor core. It is designed to test the feasibility and
accuracy of wavelet expansion in the two-dimensional calculation.
Four homogenized fuel assemblies compose the active region with
the water reflector surrounded as in Fig. 11. Two-group cross sec-
tion is given in Table 3.

The results including the Keff and flux are given in Table 4. The
reference results are calculated by the FDM method using the same
angular discretization. The spatial expansion order used in this
problem is n = 3 (8 � 8 unknowns in each of the nine nodes) and
the reference solution uses 51 � 51 meshes. Fig. 12 illustrates the
flux distribution along the bottom sides. Comparisons in Table 4
and Fig. 12 demonstrate that the WEM method can be used in
Total number of meshes in FDM

n = 4 25 50

1.6784 1.6780 1.6781
�0.001 �0.024 �0.018
34.4 0.5 1.9

e.
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Fig. 9. Description of the Reed cell problem.

Fig. 10. Comparison of the flux distribution of Reed cell problem.

Fig. 11. Geometry of the simplified reactor core problem.

Table 3
Cross section of the simplified rector core problem.

mRf (cm�1) R1–1 (c

Group 1 Fuel 6.203E�3 1.780E
Reflector 0.0 1.995E

Group 2 Fuel 1.101E�1 1.089E
Reflector 0.0 1.558E

Table 4
Results of the simplified reactor core problem.

Keff Average fast flux

Fuel Reflec

Wavelet expansion 0.9919 0.0178 0.0029
Reference 0.9920 0.0178 0.0029
Error/% 0.01 0.10 0.17
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the two-dimensional calculation. Both the Keff and flux are accurate
enough. However, the CPU time cost is larger than the FDM meth-
od in this problem.
4.4. Deep penetration problem

This is a two-dimensional fixed source problem derived from
the neutron detection process. In the optical thick medium, the
neutron flux decreases sharply at the interface of source zone
and medium zone, i.e. large gradient arises. The descriptions of
geometry and cross section are given in Fig. 13 and Table 5, respec-
tively. The reference results are calculated using the FDM method
with the same angular discretization.

Fig. 14 illustrates the flux distribution along the X-direction. The
reference results are obtained by using 18,620 meshes and cost
27.6 s. In the wavelet expansion method, the medium is divided
by 4 � 4 nodes. In each node, the expansion order is n = 3 and to-
tally 1024 unknowns need to be determined. As in Fig. 14, both
the fast flux and thermal flux decrease sharply in the medium.
The wavelets reconstruct such distribution precisely. However,
the CPU time cost is 60.6 s, which is also larger than the one
FDM costs.
5. Conclusion

In this paper, a new method using the wavelet expansion to dis-
cretize the angular and spatial variables in the neutron transport
equation is described. The angular variable is discretized using
the decoupled scheme. The tensor product spatial expansion is ap-
plied in the two-dimensional calculations, in which the basis func-
tion is also the Daubechies scaling function. A sweeping scheme is
designed together with the appointed expansion sequence to avoid
the effect of asymmetric basis function. The boundary conditions
and interface conditions are all expressed using the wavelet expan-
sion and added into the matrix originally generated from the var-
iation scheme.
m�1) R1–2 (cm�1) Rt (cm�1) v

�1 1.002E�2 1.966E�1 1.0
�1 2.188E�2 2.220E�1
�3 5.255E�1 5.962E�1 0.0
�3 8.783E�1 8.879E�1

Average thermal flux CPU time (s)

tor Fuel Reflector

0.0029 0.0035 366.9
0.0029 0.0035 15.6
�0.03 0.26



Fig. 12. Flux distribution in the simplified reactor core (a) for fast flux (b) for
thermal flux.

Fig. 13. Description of the deep penetration problem.

Table 5
Cross section of the deep penetration problem.

Group Sg (cm�3 s�1) Rt,g (cm�1) Rs,g�1 (cm�1) Rs,g�2 (cm�1)

1 0.0065 0.1011 0.0159 0.0234
2 0.0177 0.1085 0.0000 0.0125

Fig. 14. Flux distribution in the deep penetration medium (a) for fast flux (b) for
thermal flux.
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The results of test problems so far have demonstrated that the
new method is feasible and accurate in the neutron transport solu-
tion. It can directly simulate the continuous flux distribution in the
medium. Generally, higher expansion order encourages better re-
sults but causes lower efficiency. In the problem suffering large
graded distribution, the new method is powerful and efficient.
For the high dimensional calculation, it is also accurate, but the
efficiency is not so satisfying. It is due to the sharply increase of
CPU time cost in solving the matrix formed by the tensor product
expansion. Separation of variables may be a potentially effective
approach, and the studies may be done in the future work.
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