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a b s t r a c t

To provide few-group constants for the assembly-homogenized PWR core neutronics simulation based
on the two-step approach, few-group constants parameterization is required by using the discrete
relationship between those few-group constants and the assembly state parameters. As numerical
methods for both lattice and core calculations have been more and more advanced, few-group param-
eterization tends to be the main error source for reactor physics calculations. In addition, there are also
other effects such as history effect expected to be treated during parameterization process. Currently
there are several parameterization methods but there is no clear conclusions drawn on how to select
when dealing with new problems or developing new codes. Thus, this study characterized the entire
few-group constants parameterization into three main aspects, namely the combination of state pa-
rameters, functionalization and attached effects, and developed a common link code named NECP-Lilac
to answer those questions. Firstly, by optimizing state parameter combination, error of few-group
constants is reduced by half. Secondly, the two most widely employed functionalization methods
including linear interpolation and least-square fitting are compared based on typical PWR problems.
Linear interpolation is recommended for new reactors since it needs almost no experience on discrete
point generation process as long as there are sufficient numbers of them. Least-square fitting is suggested
for routine calculations considering the fact that it needs only half discrete points for each state
parameter to provide the same precision with linear interpolation. Thirdly to treat the history effect, two
methods including macro-correction and micro-depletion are implemented and compared. It has been
found that the micro-depletion method can always reduce the corresponding error while the perfor-
mance of the macro-correction method appears case dependent.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Traditionally, during design and operation simulation processes,
PressurizedWater Reactor (PWR) core is calculated by using the so-
called two-step approach (H�ebert, 2009; Smith, 1986). Firstly, it is
the lattice calculation which provides a neutronic few-group con-
stants library usually on assembly geometry for specific discrete
states. These neutronic few-group constants include few-group
(usually two-group) macro- and microscopic cross sections, pin-
power form factors, discontinuity factors and so on, while these
states are represented by state parameters or state variables such as
fuel burnup, boron concentration, fuel and moderator tempera-
tures and et al. Secondly, coupled neutron diffusion and thermal-
nd Technology, Xi'an Jiaotong
0049, China.
hydraulics are usually carried out for a single- or quarter-
assembly homogenized whole core configuration, which may
need spatially homogenized and energy group condensed
neutronic few-group constants at any possible discrete state.
Considering the fact that the discrete state required by the reactor
core calculation may be different from the ones provided by the
lattice calculation, a process is required to provide a function be-
tween those neutronic few-group constants and state parameters
based on the discrete points provided by lattice calculations. It is
usually named as few-group constant parameterization, or the link
process, or cross section model.

Form the implementation point of view, few-group constants
parameterization can be separated into three steps. Firstly, a set of
parameters that strongly affect the few-group constants should be
selected as state parameters to represent the state of the assembly.
Traditionally, those selected state parameters consist of fuel burnup
(Bu), boron concentration (CB), relative power density (Pr), fuel
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temperature (Tf), moderator temperature (Tm), moderator density
(r), void fraction xv, neutron spectrum index (SI), control rod po-
sition (CR) and so on. Secondly, instead of directly obtaining a
multi-dimensional function between each few-group constant and
those state parameters, each of the constants is separated into
several components according to their physical affecting mecha-
nism. For example, Bu and CB are usually combined together to
make a joint contribution component, while Tm and Bu are com-
bined together to make another. In this way, both computing effort
and storage requirements can be decreased by the avoiding of the
dimension curse (Bokov et al., 2012). However, if state parameters
cannot be decoupled properly to take into account the coupling of
the close related ones, extra error may be introduced. Thirdly, for
each component, a functionalization is required by using the
discrete points provided by lattice calculation. Traditionally, least-
square fitting (Zhang et al., 2005; Mayhu et al., 2006; Boyd et al.,
2009) and linear interpolation (Shen, 2004; Huang et al., 2008)
are the twowidely employed functionalization algorithms, noticing
that other algorithms are also investigated (Bokov et al., 2012).

Traditionally, neither lattice nor reactor core calculation tech-
niques are developing research areas. But the errors caused by
those two are reduced during the past decades, leaving the few-
group constants parameterization as almost an engineering topic,
strongly experience dependent and becoming the main error
source. In addition, some special effects such as history effect can
also be considered in few-group constants parameterization pro-
cess. The term history effect (Fujita et al., 2014) refers to the dif-
ference of neutronic few-group constants between two assembly
states which share exactly the same state parameters but experi-
enced different depletion processes starting from exactly the same
beginning. It happens mainly due to the dependence of the nuclide
density evaluation to the depletion history.

To provide an insight of the link process, and also to provide a
tool to evaluate the currently available approaches for specific ap-
plications, Nuclear Engineering Computational Physics (NECP)
laboratory of Xi'an Jiaotong University has developed a general
code named NECP-Lilac (Gao, 2015) (LInk of LAttice code and Core
simulator) in an modularized object-oriented manner. The term
“general” here refers to that the code leaves a number of options to
its users other than fixing them in the source code. In this code,
there is no limitation on the type or the number of few-group
constants, the type or the number of state parameters, the com-
bination of those state parameters et al. Thus, by using this code, we
evaluated different parameterization models. The evaluation re-
sults and the conclusions based on typical Pressurized Water
Reactor (PWR) are summarized in this paper, mainly in three as-
pects. First, it is the optimization of the combination of state pa-
rameters including Bu, CB and Tf. Second, two functionalization
methods, namely the least-square fitting and the multi-
dimensional linear interpolation, are developed, compared and
analyzed. Third, two history effect treatments namely the macro-
correction and micro-depletion methods are implemented, evalu-
ated and compared.

This paper is organized as following. Section 2 introduces the
theory of the three evaluations, while Section 3 lists the numerical
results based on typical PWR problems. Finally, Section 4 sum-
maries the conclusions.
2. Theoretical model

In this section, after introducing the original and improved
combinations of state parameters, the two functionalization
methods and the two history effect treatments are described in
detail.
2.1. The combination of the state parameters

To avoid direct multi-dimensional functionalization with the
curse of dimension, all of the state parameters are usually com-
bined together to provide several terms to be summed and/or
multiplied together to obtain the active few-group constants.
Considering that Bu provides accumulated effect on few-group
constants while the others has only instantaneous effects, the
most obvious way is to combine Buwith each of the others, such as:

SðBu;CB; Tf ; TmÞ ¼ fBaseðBu;CBÞ þ fFuelðBu; Tf Þ
þ fModeratorðBu; TmÞ (1)

It is currently widely adopted by many codes such as CASMO/
SIMULATE (Studsvik, 2009, 1995), GLORY (Huang et al., 2008),
SIMME (Cao, 2013) et al. BTW, it is optional in SIMULATE to
combine any three of them together.

The combination of those state parameters can save a lot of
computing time and memory. For example, there are 30 burnup
steps, 7 boron concentrations, 4 fuel temperatures and 3moderator
temperatures for a very conservative prediction for PWR assem-
blies. The complete combination of all four demands
30 � 7 � 4 � 3 ¼ 2520 states to be evaluated by the lattice calcu-
lation. As required by Eq. (1), only 30 � (7 þ 4 þ 3) ¼ 420 states
would be required.

Actually, the combination and separation depend on whether
the coupling between different state parameters is strong or weak.
The combination in Eq. (1) neglects the coupling between CB, Tf and
Tm. Considering the fact that both CB and Tm exist in themoderator,
the separation of them would introduce extra error. Thus, an
alternative one is suggested

SðBu;CB; Tf ; TmÞ ¼ fBaseðBu;CB; TmÞ þ fFuelðBu; Tf Þ (2)

In contrast to Eq. (1), the combination in Eq. (2) requires
30� (7� 3þ 4)¼ 750 states for the above example to be evaluated
by the lattice calculation.
2.2. Functionalization methods

After the determination of combination form and the evaluation
of lattice calculation, the discrete relationship between state pa-
rameters and component contribution for each term can be ob-
tained as following:

xi/f ðxiÞ (3)

where vector xi refers to the state parameter vector for discrete
state i ¼ 1 ~ n and f(xi) is the corresponding component.

The term functionalization here means to obtain a contentious
relationship between vector x and the function f(x) by using the n
discrete states in Eq. (1). Currently, the most widely used numerical
functionalization methods in few-group constants parameteriza-
tion are the least-square fitting and the multi-dimensional linear
interpolation. Here we only describe how to implement them into
the code of NECP-Lilac.

2.2.1. Least-square fitting
It is supposed that the function f(x) can be approximated by a

sum of finite number (L) of polynomials

f ðxÞz
XL
l¼0

cl$PlðxÞ (4)

where Pl(x) stands for a polynomial of order l, the corresponding
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coefficients cl can be obtained by minimizing the L2 norm of the
following residual in terms of the vector c constructed by cl:

RðcÞ ¼
Xn
i¼1

"
f ðxiÞ �

XL
l¼0

cl$PlðxiÞ
#2

(5)

Requiring:

vR
vc

¼ 0 (6)

yields a linear algebraic equation:

Ac ¼ b (7)

where the entries of coefficient matrix A and the right hand side
vector b are respectively

ajl ¼
Xn
i¼1

PjðxiÞPlðxiÞ (8)

bj ¼
Xn
i¼1

PjðxiÞf ðxiÞ (9)

Considering the fact that the entry values of the vector xmay be
very large such as fuel burnup Bu or very small such as void fraction
xv, the value of their polynomials may turn out to be very large or
small by magnitudes, which may cause the Eq. (7) ill-conditioned.
To overcome this problem, the entries x are normalized before
the actual fitting process:

ex ¼ x� xav
xstd

(10)

where xav is the average value of xi:

xav ¼ 1
n

Xn
i¼1

xi (11)

xstd is its standard deviation:
(Bu1,Tfref) (Bu2,Tfref) (Bu3,Tfref) (Bu4,Tfref)
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Fig. 1. Branch calculation scheme.
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Fig. 2. Depletion calculation scheme.
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Fig. 3. The typical PWR assembly configuration.



Table 1
Lattice calculation state points.

State Parameter No. state points Values

Tf (K) 4 564.12, 723.12, 923.12, 1015.12
Tm (K) 3 566.15, 583.85, 601.55
CB (ppm) 7 0, 200, 500, 1000, 1400, 1700, 2000
Bu (MWd/tU) 52 0, 24, 48, …, 120, 240, 360…,

2520, 3120, 3720…,
14,520, 16,320, 18,120,…, 25,400
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xstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðxi � xavÞ2
vuut (12)

Once the fitting process is done without the bothering of ill-
conditioned equation, the coefficients cl can be transformed back
to the original state parameters. In this way, the precision of the
least-square fitting can be guaranteed free from the magnitude of
the state parameters.
Fig. 4. Parameterization errors when CB and Tm are separated.
It can be found that Bu is a very special parameter compared
with the others. It covers a very large domain, usually from 0 to
45,000 MWd/tU or even more. In addition, it affects the few-group
constants severely since it indicates the consumption of fissile
nuclides and the accumulation of fission products. Consequently, it
is very hard to obtain a high precision single polynomial for the
entire domain of Bu. Low order polynomials cannot describe the
shape of the curve, while high order polynomials would cause the
Runge's phenomenon (Gautschi, 2012). Thus, the Bu domain is
usually divided into several segments, and then the least-square
fitting is carried out separately one segment after another. It is
important to notice that the connection between two adjacent
segments has to be guaranteed to avoid non-physical divergences
in neutronics and thermal-hydraulics coupling iteration and in
critical searching iteration.

2.2.2. Multi-dimensional linear interpolation
Instead of minimizing the L2 norm of the residual between the

polynomial approximation and the active function on the discrete
state points, the multi-dimensional linear interpolation method
tries to directly connect the state points to make a piece wise linear
Fig. 5. Parameterization errors when CB and Tm are combined.



Table 2
Burnup steps.

Segment Start/GWd tU�1 End/GWd tU�1 Step/GWd tU�1 No. state points

1 0.0000 0.1203 0.02406 5
2 0.1203 2.5263 0.06015 40
3 2.5263 14.5563 0.20050 60
4 14.5563 68.6913 0.60150 91
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surface to approximate the active function. To obtain the few-group
constants for state x with dimension of M, 2M known state points
are required to provide two boundary points in each dimension as
xm1 � xm � xm2 to construct a box or super box that contains the
targeted state inside or on the surfaces. Define mx1 and mx2 as the
state points with their firstm dimensions take the values of x1 ~ xm

respectively while the m þ 1 dimension are respectively specified
as xmþ1

1 and xmþ1
2, and the rest of the dimensions are either

xmþ2
1 ~ xM1 or xmþ2

2 ~ xM2. The corresponding collections are
respectively {mx1} and {mx2}, in each of which there are 2M�m�1

entries. Also define the sum collection {mx} ¼ {mx1}∪{mx2}, which
contains 2M�m entries. Consequently, the known 2M state points
Fig. 6. Relative error of f(Bu) functionalization for 102 used states out of 196.
belongs to the collection {0x} ¼ {0x1}∪{0x2}, and the targeted state
point belongs to a single entry collection {Mx}. Based on these
definitions, the multi-dimensional linear interpolation becomes
how to obtain the few-group constants contributions sequentially
for state collections {0x}, {1x},…, {mx},…, {Mx}. For each levelm, the
known collection {m�1x} is firstly divided into {m�1x1} and {m�1x2}.
Then f(mx) can be obtained:

f ðmxÞ ¼ f ðm�1x1Þ þ ½f ðm�1x2Þ � f ðm�1x1Þ�
xm � xm1
xm2 � xm1

(13)

It can be found that the above process can adapt to problemwith
any number of dimensions. And also it can be proved that the
sequence of the state parameters within the vector x does not affect
the final result of f(x). In addition, it is worth to notice that the
combined linear pieces are not smooth at the known state points
which may be required during transient simulations (Liao, 2002).
Fig. 7. Relative error of f(Bu) functionalization for 45 used states out of 196.
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2.3. History effect treatments

History effect happens mainly due to the fact that Bu chosen to
indicate the nuclide composition with depletion is a macroscopic
parameter. The relationship between Bu and the active composition
is not a single value reversible relationship. It provides an oppor-
tunity for one assembly to reach two states with exactly the same
Bu but totally different nuclide compositions via two different
depletion experiences. For example, two assemblies which are
exactly the same at beginning are depleted at two different levels of
power and different length of time. As long as the amounts of en-
ergy released by them are exactly the same, their Bu would be
exactly the same. But their nuclide compositions are impossibly to
be the same due to the fact that two different depletion calculations
(Cacuci, 2011) lying behind. Thus, generally speaking, history effect
refers to the difference in few-group constants caused by different
depletion conditions such as power level, neutron spectrum and
et al.
Fig. 8. Relative error of f(CB) functionalization for 4 used states out of 21 at 2.0 GWd/
tU.
In order to reduce the history effect as much as possible, the
assemblies are traditionally depleted in a most possible condition
named as reference condition during the lattice calculation. For
other states that do not locate in this depletion line, branch
calculation scheme is employed to evaluate the few-group con-
stants. For example, as shown in Fig. 1, the assembly is depleted at
Tf ¼ 923 K to evaluate the states {(Bu, Tf) j Bu ¼ 0, 24, 48,…, 120,…
MWd/tU; Tf ¼ 923 K}. For other states such as {(Bu, Tf) j Bu ¼ 0, 24,
48, …, 120, … MWd/tU; Tf ¼ 723 K}, their nuclide composition are
obtained by switching Tf from the corresponding Bu states. Those
state parameters that can be switched instantaneously during
branch calculation have only instantaneous effect the few-group
constants, and are named as instantaneous state parameters.

In the code NECP-Lilac, the two widely employed methods have
been implemented to treat the history effect, namely the macro-
correction method and the micro-depletion method. They are
introduced in 2.3.1 and 2.3.2 respectively. In order to make the
history effect separated from other approximations within the two-
Fig. 9. Relative error of f(CB) functionalization for 4 used states out of 21 at 10.0 GWd/
tU.
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step approach, such as the reflective boundary condition during
homogenization, an infinite reactor core with the same assembly
repeated is selected in this work to compare the two history effect
treatments. Thus, the two-group neutron diffusion solution of this
core is analytical since there is no leakage any more.
2.3.1. Macro-correction method
Considering the fact that history effect is caused by different

depletion conditions, macro-correction method defines new state
parameters to describe the depletion conditions. As long as their
contribution to few-group constants can be evaluated, a correction
term can be obtained to consider history effect. In contrast to the
instantaneous state parameters, these newly defined ones are
named history state parameters. Theoretically, each of the instan-
taneous state parameters can be defined as a corresponding history
state parameter.

For instantaneous state parameter V, its history state parameter
HV is defined as its weighted average over the past depletion
experience:
Fig. 10. Relative error of f(CB) functionalization for 4 used states out of at 30.0 GWd/tU.
HV ¼ 1
Bu*

ZBu*

0

uðBuÞVðBuÞdBu (14)

where Bu* is the current burnup (MWd/tU), the weighting function
u(Bu) is experience dependent and usually assumed to be
constantly 1.0.

Other than the basic branch calculations, additional depletion
calculations have to be carried out to obtain the effect of history
state parameters to the few-group constants. Again, take fuel
temperature as an example. States {(Bu, Tf) j 0, 24, 48, …, 120, …
MWd/tU; Tf ¼ 723 K} are evaluated by direct depletion calculation,
similar to the reference ones, as shown in Fig. 2. If the few-group
constants at the same states obtained by branch calculation are
noted as Sbranch(V), and those obtained by depletion calculation
noted as Sdepletion(V), the macro-correction term is defined as:
Fig. 11. Relative error of f(CB) functionalization for 10 used states out of 21 at 2.0 GWd/
tU.
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DSðHVÞ ¼ SdepletionðVÞ � SbranchðVÞ (15)

Thus, the final few-group constants would be the sum of the
instantaneous and macro-correction parts.

It can be found that the macro-correction method requires
additional lattice evaluations by almost a factor of 2 to obtain the
history effects of the few-group constants. Also of course it in-
creases the number of state parameters by almost another factor of
2.
2.3.2. Micro-depletion method
History effect roots in the fact that the macroscopic state

parameter Bu cannot recognize the single nuclide composition.
Thus, the micro-depletion method chooses a number of important
nuclides to be tracked online during the core simulation. Once
those microscopic cross sections provided to the core simulation,
the depletion equation of those nuclides can be solved on-line to
track their nuclide densities. And the active macroscopic cross
section for neutron diffusion calculation can be assembled back
Fig. 12. Relative error of f(CB) functionalization for 10 used states out of 21 at
10.0 GWd/tU.
with the history effect considered.
Thus, the few-group macroscopic cross sections are separated

into the contributions from the unrecognized and recognized nu-
clides. The unrecognized ones are still packed together in the form
of macroscopic cross sections, while the recognized ones are
separated into the multiplication of the corresponding nuclide
density and microscopic cross section. Supposing K nuclides are
recognized, the few-group constants would be separated:

SðxÞ ¼ S0ðxÞ þ
XK
k¼1

NkðxÞ$skðxÞ (16)

where Nk(x) and sk(x) are respectively the nuclide density (cm�3)
and microscopic cross sections (cm�2 s�1) of the kth recognized
nuclide obtained from the lattice calculations.

There are two options for how to treat the recognized nuclide
densities. (1) The one obtained from the lattice calculation are
dropped away, while the one obtain from the on-line depletion
calculation are put back to reconstruct the few-group constants. (2)
The one obtained from the lattice calculation are also linked. Only
Fig. 13. Relative error of f(CB) functionalization for 10 used states out of 21 at
30.0 GWd/tU.
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the difference between it and the one obtained from on-line
depletion are multiplied by the microscopic cross section to take
account the history effect. Considering the fact that the difference
between these two nuclide density treatments is trivial compared
with the difference betweenmicro-depletion andmacro-correction
methods, only the first one is considered in this paper.

In addition, the on-line depletion calculation during the reactor
core simulationwould encounter the same situation that the lattice
depletion calculation runs in. For the current time step i, the
nuclide density, microscopic cross section and neutron flux are all
known. To obtain the nuclide density for the next time step iþ1, the
average microscopic cross sections and neutron flux between these
two time steps have to be known also, which are unfortunately
unknown. Thus, the legacy prediction-correction method for lattice
depletion calculation is employed to solve this problem.
3. Numerical results

In this paper, a typical PWR problem as shown in Fig. 3 is taken
Fig. 14. Relative error of f(Tf) functionalization for 4 used states out of 21 at 2.0 GWd/
tU.
as an example to test the theoretical models. All of thematerials are
the common ones in PWR and can be found in ref. (Gao, 2015), thus
omitted here. During the numerical evaluation, the code DRAGON
(Marleau et al., 1997) is employed to carry out all the lattice
calculations.

Different from the practical few-group parameterization, more
states are evaluated by the lattice code to provide validation
reference. The existences of those extra states are ignored during
the functionalization and history treatments. In contrast, the state
points that are used for functionalization are called used points,
while the extra ones just for validation are named raw points.

3.1. The combination of the state parameters

To compare the two combinations in Eq. (1) and Eq. (2)
respectively, all the states (4368) shown in Table 1 are evaluated.
The corresponding parameterization errors are shown respectively
in Fig. 4 and Fig. 5. As in Fig. 4, one can see that even though good
precision is observed at used states, errors for raw points are
relatively big due to the strong dependence between CB and Tm. In
Fig. 15. Relative error of f(Tf) functionalization for 4 used states out of 21 at 10.0 GWd/
tU.
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contrast, the maximum error of absorption cross sections (about
1.0% in Fig. 4) is reduced to 0.1% in Fig. 5, and the overall error
magnitude is reduced by almost one order of magnitude. Thus the
combination of CB and Tm is suggested for the future PWR few-
group constants parameterization.

3.2. Functionalization methods

In this subsection, least-square fitting and linear interpolation
are compared numerically for each of Bu, CB, Tf and Tm. Each of
them are evaluated with the others fixed. The few-group constants
are macroscopic and microscopic cross sections. Macroscopic ones
are the total, fission, absorption and scattering, while microscopic
cross sections are the capture (and fission for fissile and fertile) of
nuclide 235U, 238U, 241Pu, 135Xe, 143Nd and so on.

For fuel burnup Bu, Table 2 lists the 196 states evaluated by the
lattice calculation. Two sets of used points are selected. (1) 102 used
states including the first 8 and one over two of the rest. (2) 45 used
states including the first 8 and one over 5 of the rest. Relative errors
of functionalization are summarized in Fig. 6 and Fig. 7. For the
Fig. 16. Relative error of f(Tf) functionalization for 4 used states out of 21 at 30.0 GWd/
tU.
least-square fitting method, 45 used state points can provide a
maximum error of about 0.02%, while linear interpolation requires
102 used state points to provide a maximum error of about 0.03%. It
indicates that linear interpolation requires about two times more
state points that the least-square fitting. If only 45 state points are
forced to be used by the linear interpolation, the maximum error
would be 0.3%, which is one order of magnitude larger than the
least-square fitting.

For boron concentration CB, lattice calculation evaluated 21
state points for each of the three burnup levels including 2.0 (low),
10 (medium) and 30 (high) GWd/tU at Tf ¼ 923.15 K and
Tm¼ 583.85 K. These CB points are sequentially 0, 100, 200, 300,…,
2000 ppm. Fig. 8, Fig. 9 and Fig. 10 show the relative error of
functionalization when 4 states are used. It can be found that the
least-square fitting provides a maximum relative error of about
0.01%, while the linear interpolation provides about 0.1%. In
contrast, results for 10 used state points are shown in Fig. 11, Fig. 12
and Fig. 13, in which both functionalization methods provide
similar precisions with maximum error of about 0.01%.
Fig. 17. Relative error of f(Tm) functionalization for 4 used states out of 15 at 2.0 GWd/
tU.
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Similarly, also at low (2.0 GWd tU�1), medium (10 GWd tU�1)
and high (30 GWd tU�1) levels of burnup, with Tm ¼ 583.85 K and
CB ¼ 1000 ppm, few-group constants are generated at 21 fuel
temperatures including 723.15, 743.15, 763.15, …, 1123.15 K. As
shown in Fig. 14, Fig. 15 and Fig. 16, however, only 4 used state
points are sufficient for both linear interpolation and least-square
fitting, simply due to the fact that the function relationship be-
tween few-group constants and Tf is almost linear in the targeted
fuel temperature domain for reactor core simulation.

Moreover, still at the same low, medium and high levels of
burnup, with Tf ¼ 923 K and CB ¼ 1000 ppm, few-group constants
are evaluated at 15moderator temperatures: 566.15, 568.65, 571.15,
573.65, 576.15, 578.65, 581.15, 583.85, 586.15, 588.65, 591.15,
593.65, 596.15, 598.65, 601.55 K. As shown in Fig. 17, Fig. 18 and
Fig. 19, functionalization precision of 0.01% can be guaranteed by
the least-square fitting even only 4 states (566.15, 583.85, 593.65,
601.55 K) are used. As for linear interpolation, 7 states used (566.15,
571.15, 576.15, 583.85, 588.65, 593.65, 601.55 K) can only reduce the
error to be about 0.03%, as shown in Fig. 20, Fig. 21 and Fig. 22.
Fig. 18. Relative error of f(Tm) functionalization for 4 used states out of 15 at 10.0 GWd/
tU.
3.3. History effect treatments

It has already been confirmed that both macro-correction and
micro-depletion methods provide significant correction effects
when the state parameters stay constants along with depletion
(Fujita et al., 2014), but not for the histories with state parameters
changing during depletion, which happens very frequently in PWR.
Thus, this paper selected three typical histories with relative power
(as in Fig. 23), boron concentration (as in Fig. 24) and moderator
temperature (as in Fig. 25). To keep the depletion chain simplifi-
cation uninvolved, the micro-depletion chain is exactly the same
with the one in the lattice calculation.

Fig. 26 shows the errors of macroscopic cross sections without
correction, corrected by the macro-correction method and cor-
rected by the micro-depletion method for the relative power his-
tory, while Fig. 27 and Fig. 28 are respectively for the CB and Tm
histories. For the power history, both micro-depletion and macro-
correction methods provide correction effects. But the contribu-
tion of micro-depletion is more visible. However, for boron
Fig. 19. Relative error of f(Tm) functionalization for 4 used states out of 15 at
30.0 GWd/tU.



Fig. 20. Relative error of f(Tm) functionalization for 7 used states out of 15 at 2.0 GWd/
tU.

Fig. 21. Relative error of f(Tm) functionalization for 7 used states out of 15 at
10.0 GWd/tU.
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concentration history and moderator temperature histories, the
macro-depletion method appears to increase the error instead of
reducing it.

However, what must be mentioned is that the micro-depletion
method demands depletion calculation in reactor core simulation
which can be time and memory consuming. In addition, it is
obvious that the error after micro-depletion method applied is still
not zero. This is mainly due to the spatially homogenized an energy
group condensed microscopic cross sections of the recognized
nuclides. They are also affected by the depletion history through
the heterogeneous flux spectrum in space and energy group, but
remain uncorrected in this paper.

4. Conclusions

PWR few-group constants parameterization is investigated by
developing a general code named NECP-Lilac. There are three main
aspects summarized in this paper, which are the combination of
state parameters, functionalization methods and the history effect
treatments. (1) As for the combination of state parameters, other
than combining (Bu, CB) and (Bu, Tm) separately, the combination
of (Bu, CB, Tm) is suggested to take account the coupling effect of
boron concentration and moderator temperature, which would
reduce the parameterization error by almost one order of magni-
tude. (2) Other than the logical knowledge that linear interpolation
requires more state points to get a similar precision with the least-
square fitting, it has been found numerically that the corresponding
factor is about two for almost each state parameter which means
that linear interpolation requires more than one order of magni-
tude lattice calculations than the least-square fitting method.
However, the choice of fitting order and segment division is very
experience-dependent. Thus, the linear interpolation is recom-
mended for new reactors or other applications, while the least-
square fitting is more feasible for routine calculation in engineer-
ing applications. And the code NECP-Lilac can be employed to
obtain the experience on the selection of polynomial order and the
segmentation. (3) For the macro-correction and micro-depletion
methods, it has been found that in cases where state parameter
varies along with depletion, the micro-depletion method can al-
ways reduce the error by half or even an order of magnitude, while



Fig. 22. Relative error of f(Tm) functionalization for 7 used states out of 15 at
30.0 GWd/tU.

Fig. 23. Relative Power history.

Fig. 24. Boron concentration history.

Fig. 25. Moderator temperature history.

Fig. 26. Correction for relative power history.
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Fig. 27. Correction for boron concentration history.

Fig. 28. Correction for fuel temperature history.
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the macro-correction method may introduce error instead of
reducing it.

However, there are still topics left for future investigation. (1) It
is the simplification of the depletion chain. (2) It is the correction of
microscopic cross sections.
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