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a b s t r a c t

The work presents a performance model of the method of characteristic direction probabilities (CDP)
which integrates the benefits of the collision probability method (CPM) and the method of characteristics
(MOC) for solution of the integral form of the Boltzmann Transport Equation and has been implemented
in the Michigan PArallel Characteristic based Transport (MPACT) code for 2-D and 3-D transport calcu-
lations. The process of boundary averaging reduced the storage and computation but the capability of
dealing with complicated geometries is preserved since the same ray tracing information is used as in
MOC. The benefits of CDP are demonstrated by the developed performance model which describes the
storage, floating point operations and calculation time. The numerical results are given for different cases
to show the accuracy, storage, floating point operations and computing time of the CDP compared to the
MOC using the performance model. From the cases examined, the boundary average method shows
significant improvement on the storage and computational efficiency for three-dimensional cases with
sufficient accuracy.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The method of characteristics (MOC) based on the modular ray
tracing technique (Liu et al., 2011) has been implemented in
Michigan PArallel Characteristic based Transport code (MPACT) to
perform lattice and whole core calculations for LWR applications.
The MOC uses a set of discrete ordinates, which is similar to the SN
methods, but MOC is better suited to treat complicated geometries
because it only requires an approximation on the spatial variation
of the source, and not on the flux itself along the rays. However, the
transport sweep needs to be performed along all the characteristics
lines for every direction, and this sweeping time will be compu-
tationally expensivewhen calculating three-dimensional problems,
in which the number of characteristic rays could be quite large to
accurately present very thin regions using burnable absorbers such
as IFBA that coat the fuel pin.
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In the previous work (Liu et al., 2013), the method of charac-
teristic direction probabilities, which was first proposed by (Hong
and Cho, 1999), was implemented in MPACT to minimize the
computation efforts. This new transport method couples the
desirable features of the MOC and the collision probability (CPM)
(Sanchez, 1997). CPM has been widely used in lattice physics codes
because it has the capability of treating the complicated geometries
and is very efficient when dealing with small size problems. But
this method has the drawback that the storage requirements and
computing time depend on the square of the number of fine spatial
regions in the problem. This is because the collision probability
matrix couples all the finemesh regions. To overcome the drawback
of CPM when dealing with big size problems, the interface current
method (ICM) (Mohanakrishnan, 1981) was developed which
couples the sub-domains with interface current of interface current
moments, and within the domains the fine regions are coupled by
the CPM. However, compared to the interface current method, CDP
doesn't introduce the approximation at the interface of the sub-
domain and the anisotropic sources. Another drawback of CPM is
that it cannot easily treat anisotropic sources. In the CDP, only fine
regions traversed by a characteristic line within a specified sub-
domain are coupled which is the most significant difference with
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CPM. At the same time, the CDP is capable of providing the same
accuracy as MOC if the unique boundary sub-domains are the same
size as the MOC ray spacing. The only difference in the methods
then would be that instead of performing the transport sweep ray
by ray of the MOC, the CDP method obtains the outgoing angular
flux and fine region flux by direct multiplication of a matrix which
contains the collision and transmission probabilities and a vector
which includes the coming angular flux and the fine region source.
The collision and transmission probabilities in the CDP are derived
by integrating the traditional MOC equations along a characteristic
line. So in principle, the method of characteristics direction prob-
abilities is mathematically consistent with the conventional MOC.
To further improve the efficiency of the CDP, the boundary averaged
ray tracing technique was introduced which can reduce the
memory required for storing the probabilities and improve
computing efficiency.

A performance model is described in this work to explicitly
analyze the storage requirement, floating point operations and
computing time. Based on the analysis, we can found where and
how much the boundary-averaged CDP earns the profit. The
examined numerical results proved the consistence of the perfor-
mance model to the measured results and showed the advantage of
the boundary-averaged CDP.

In the following section the basic equations of the MOC are
provided along with the derivation of the CDP method. Also
described in this section is boundary average scheme. The third
section introduces the performance model of the CDP and nu-
merical results are shown in the subsequent section. The final
section provides a summary and conclusions.
Fig. 1. The modular geometry sub-domain.
2. The method of characteristics direction probabilities

2.1. The method of characteristics

The classical method of characteristics for solving partial dif-
ferential equations has been successfully applied to the Boltzmann
Transport equation (BTE) and implemented in several reactor
analysis codes. The group-wise form of the BTE for the system R is
given by.

U$V4gðr;UÞ þ St;g4gðr;UÞ ¼ Qgðr;UÞ; (1)

where Qg(r) is total source including both the fission source term
and the scattering source terms.

The MOC equation provides a solution of the Boltzmann
Transport equation along a line in a particular direction and it re-
duces to the total differential Equation (2) which is simplified by
removing the energy group subscript g.

d4ðr0 þ sUm;UmÞ
ds

þ Sðr0 þ sUmÞ4ðr0 þ sUm;UmÞ
¼ Qðr0 þ sUm;UmÞ; (2)

where r0 is the starting point of a characteristic line and s is the
distance from the initial point to the current point along a specified
direction Um.

When solving the equation, we assume that the source and
properties are constant in a small region Di.

Qðr;UmÞ ¼ QiðUmÞ; Stðr0 þ sUmÞ ¼ St;i; r2Di (3)

In this small region if we know the incoming angular flux along
the line kwhich starts at the boundary and which can be written as
4in
i;kðUmÞ, then outgoing angular flux from Di along the line can be

calculated as:
4out
i;k ðUmÞ¼4in

i;kðUmÞexp
��St;isi;k

�þQi;kðUmÞ
St;i

�
1�exp

��St;isi;k
��
;

(4)

where si,k is the length between the outgoing point and the
incoming point of the line k in Di.

The average segment angular flux can then be given as:

4i;kðUmÞ$si;k ¼
Qi;kðUmÞ

St;i
si;k þ

4in
i;kðUmÞ � 4out

i;k ðUmÞ
St;i

(5)
2.2. Method of characteristics direction probabilities

The three-dimensional characteristics direction probabilities
(CDP) include the directional transmission and collision probabili-
ties which are stored for all the unique geometries of the problem.
The transmission and collision probabilities are derived by inte-
grating the MOC equation from the incoming boundary to the
outgoing boundary. For a given geometry sub-domain (see Fig. 1),
the outgoing angular flux of the sub-boundary can be written in
terms of the probabilities as:

4out
bo ðUmÞ ¼

X
bi2NðboÞ

Tbi�> boðUmÞ4in
biðUmÞ

þ
X

j2JðboÞ
Tj�> outðUmÞQjðUmÞ (6)

where

Tbi�> boðUmÞ ¼
X

k2ðbo∩biÞ

Ak exp

 
�Pi

j¼1

�
St;jsj;k

�!

Abo
(7)

Tj�>boðUmÞ¼
X

k2ðbo∩jÞ

Ak

h
1�exp

�
�St;jsj;k

�i
exp

 
�Pi

l¼jþ1St;lsl;k

!

AboSt;j

(8)

where 4in
biðUmÞ and 4out

bo ðUmÞ represent the incoming angular flux
and outgoing angular flux of the sub-boundary, respectively, and
where k is the characteristic line index and i is the flat source region
index along the characteristic line shown in Fig.1, andwhere j¼ 1 is
the first region traversed by the characteristic line k, and where Ak

is the cross section area of the characteristic track orthogonal to the
characteristic track direction, Abo is the projection area of the sub-
boundary, and k2ðbo∩biÞ means the characteristic lines traverse
both the bi and bo sub-boundaries.
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In addition to the outgoing angular flux, finemesh region source
of the sub-domain:

4iðUmÞ ¼
X

bi2NðiÞ
ðPbi�> iðUmÞ4biðUmÞÞ

þ
X

j2upðiÞ
Pj�> iðUmÞQjðUmÞ; (9)

where,

Pbi�> iðUmÞ ¼
X

k2ðbi∩iÞ

Ai;k

St;iVi
exp

0
@�

Xi�1

j¼1

�
St;jsj;k

�1A
� �1� exp

�� St;isi;k
��
;

(10)

and,
Pj�> iðUmÞ ¼

8>>>>>>>><
>>>>>>>>:

P
k2ðiÞ

�
si;kSt;i �

�
1� exp

�� St;isi;k
���

Ai;k

VSt;iSt;i
j ¼ i

P
k2ði∩jÞ

h
1� exp

�
� St;jsj;k

�i
exp

0
@�

Xi�1

l¼jþ1

St;lsl;k

1
A�1� exp

�� St;isi;k
��
Ai;k

ViSt;jSt;i
jsi

; (11)
In Eq. (9), j 2 up(i) refers to the regions in the up-streaming
direction of region i, and in Eq. (11)k2ði∩jÞ refers to the charac-
teristic lines which traverse through both region i and j. Therefore
the region average angular flux couples all the incoming angular
fluxes which traverse through this region and the finemesh regions
in the up-streaming direction.
2.3. The angular depended boundary average

Similar to the MOC modular ray tracing technique, the ray
tracing information is stored for all unique sub-domains as shown
in Fig. 2. For purposes of describing the boundary averaging pro-
cess, it is useful to introduce the coarse ray spacing of the radial
direction (see Fig. 3.dCr) and the coarse ray spacing of z-axial di-
rection (see Fig. 5.dCz).

The average is performed for all faces, respectively, and it is
different for TOP/BOTTOM faces than the other faces. As shown in
Fig. 4 for the TOP/BOTTOM faces, the boundary indices coming from
the same flat source region between coarse rays are averaged
Fig. 2. The characteristic rays of a sub-domain.
together. So only the coarse ray spacing of the radial direction is
useful when the average is determined for the TOP/BOTTOM faces.
This averaging method has the benefit that it can determine at the
same time all the outgoing fluxes which are outgoing from the
same flat source region but in different angles and space, as shown.
The average of the other faces is performed on every sub-boundary
which is determined by the coarse rays shown in Fig. 5, which also
shows that the final sub-boundaries are different for different
angles.
3. The performance model

The method of characteristics direction probabilities is
essentially an integral form MOC in which the computational
effort of sweeping is reduced by storing preprocessed infor-
mation. The reduction in the computational effort can be
quantified by comparing the performance of the CDP to MOC
using a performance model which accounts for the storage in
memory, the computing operations, and the overall calculation
time.
3.1. Memory storage requirements

The non-zeros of the CDP probability matrix are stored for every
angle of every unique sub-domain of every energy group. The
probabilities include the incoming-outgoing transmission proba-
bilities, region-outgoing transmission probabilities, incoming-
region collision probabilities, and regioneregion collision proba-
bilities. This can be expressed as:

Niang
nz;id ¼ Niang

in�> out;id þ Niang
reg�> out;id þ Niang

in�> reg;id þ Niang
reg�> reg;id

(12)

whereNiang
nz;id is the number of none-zeros for the iangth angle of idth

sub-domain.
Fig. 3. The coarse ray spacing.



Fig. 4. Boundary index average of the TOP/BOTTOM face.
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If no averaging is performed, the expression of each individual
term for both with/without average cases can expressed as follows:

Niang
in�> out;id ¼ Niang

ray;id; Niang
reg�> out;id ¼ Niang

seg;id; Niang
in�> reg;id

¼ Niang
seg;id; Niang

reg�> reg;id ¼ Nc;idNreg;id (13)

where, Niang
ray;id is the number of characteristic rays for the iangth

angle of idth sub-domain, Niang
seg;id is the number of segments for the

iangth angle of idth sub-domain, and Nreg,id is the number of fine
regions.

Every outgoing angular flux has a corresponding incoming
angular flux along its characteristics ray, so the number of
incoming-outgoing transmission probabilities is equal to the
number of characteristics rays. Along a single ray, every flat source
region traversed will contribute to the outgoing angular flux, and
therefore the total number of region-outgoing transmission prob-
abilities will be the same as the number of segments. According to
the reciprocity relations, the number of incoming-region collision
probabilities will be equal to the number of segments as well. It is
more complicated to determine the number of regioneregion
probabilities since in the CDP every region just couples the up-
streaming regions which vary with the number of angles and
spacing of the rays. However, for a given sub-domain the region-
eregion probabilities of different azimuthal angles will not change
much, and therefore can be assumed as a constant times the
number of flat source region, where the constant is set as Nc and
can be determined by measurement for a particular angle with a
relatively coarse ray spacing. The number of none-zero probabili-
ties can then be expressed as:

Niang
nz;id ¼ Niang

ray;id þ 2Niang
seg;id þ Nc;idNreg;id: (14)

For the average case, a multi-to-one relation of the incoming-
outgoing probabilities can be used where one outgoing angular
flux no longer has one corresponding incoming angular flux but is
coupled several incoming angular fluxes. A similar relation can be
Fig. 5. Boundary index average of the other faces.
used for the region-out transmission probabilities and incoming-
region collision probabilities. It is interesting to note that the
number of regioneregion does not change since the angles and ray
spacing doesn't change. Therefore, the number of none-zeros for
the average case can be written as:

Niang
in�out;id ¼

XBOiang
id

ibo¼1

Nbiiangibo;id ; Niang
reg�> out;id ¼

XBOiang
id

ibo¼1

Nriangibo;id;

Niang
in�> reg;idzNiang

reg�>out;id; Niang
reg�> reg;id ¼ Nc;idNreg;id;

Niang
nz;id ¼

XBOiang
id

ibo¼1

Nbiiangibo;id þ 2
XBOiang

id

ibo¼1

Nriangibo;id þ Nc;idNreg;id

(15)

where BOiang
id is the number of outgoing sub-boundaries of idth sub-

domain and Nbiiangibo;id is the number of the incoming sub-boundaries
of the iboth outgoing sub-boundary of the idth sub-domain.

The number of none-zeros is reduced when averaging is per-
formed on the boundary, especially for 3-D cases. Eq. (14) and Eq.
(15) provide the number of none-zeros for a particular angle of a
sub-domain for one energy group. The total number of none-zeros
can then be written:

Ntotal
nz ¼ Ng

XNd

id¼1

XNang

iang¼1

Niang
nz;id (16)
3.2. The operation comparison of the MOC and CDP

The operation count for MOC and CDP requires explicit com-
parison the floating point operations (FLOPs) required for ray
tracing. However, in addition to the sweep kernel, additional op-
erations are required in CDP for generating the probabilities.
Because the FLOPs are primarily dependent on the details of the
coding, the pseudo code of the sweep kernel is given in Fig. 6.
Fig. 6. The sequence of the sweep kernel.



Fig. 7. The sweep kernel of MOC.
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Fig. 6 shows the sweep sequence for both CDP and MOC, which
also indicates that the only difference between them is the process
of ray tracing; the CDP is a matrix-vector multiplication while the
MOC traces ray by ray. Therefore only the operations of that part
will be counted and compared in the sweep.

The operation count of the MOC kernel is determined from the
Fig. 7 which shows the detailed ray tracing kernel of the MOC with
rectangular boxes marking all operations in each individual part of
the kernel. It should be noted that the plus operationmarked by the
circle will not be counted because it is just taken as an index of
array xstr(:). Therefore the total operation count of the MOC sweep
kernel can be expressed as:

Fmoc ¼ 9NswpNgNseg

The CDP sweep kernel is shown in Fig. 8. Since the dimension of
the matrix “n” is equal to NBO þ Nreg, the total number of operations
can be expressed as:

F ¼ NswpNg

�
2Nig

nz þ NBO þ Nreg

�
(17)
Fig. 8. The kernel of CDP.
Instead of the verbose code for generating the probabilities, a
brief description of the processing of the probabilities is shown in
Fig. 9. The total operation count can be derived by the operations
required for every step.

Fiang;igGP;id ¼
h
6Niang

seg;id

i
þ

2
64 XNiang

ray;id

iray¼1

Nsiangiray;id

�
Nsiangiray;id � 1

�.
2

3
75

þ
h
Niang
ray;id

i
þ
h
4Niang

seg;id

i

þ

2
6666664

PNiang
ray;id

iray¼1
Nsiangiray;id

�
Nsiangiray;id þ 1

�.
2þ 2Niang

seg;id

þ3

0
@ PNiang

ray;id

iray¼1
Nsiangiray;id

�
Nsiangiray;id þ 1

�.
2� Niang

seg;id

1
CA

3
7777775

þ
h
Niang
in�> out;id þ 2Niang

reg�> out;id þ Niang
in�> reg;id

þ 2Niang
reg�> reg;id

i
þ
h
Ninv;iang
in�> out;id þ 2Ninv;iang

reg�> out;id

þ Ninv;iang
in�> reg;id þ 2Ninv;iang

reg�> reg;id

i

¼ 2:5
XNray

iray¼1

�
Nsiangiray;id

�2 þ 10:5Niang
seg;id þ Niang

ray;id

þ 2Niang
in�> out;id þ 6Niang

reg�> out;id þ 4Niang
reg�> reg;id

(18)

The total number of operations is summarized in Eq. (18) where
each term in the square brackets is the number of FLOPs for every
step. It should be noted that for a particular angle, the probability
matrix of both forward and backward direction are set together
which minimizes the FLOPs required. By summing over all angles
and multiplying by the number of energy groups, the total FLOPs
are:

Fid ¼ Ng
X
iang

Fiang;igGP;id (19)
Fig. 9. The process of generating the probabilities.



Table 1
The Eigenvalue of the problem.

MOC CDP

No_avg Case 1 Case 2 Case 3 Case 4

k-eff 1.32624 1.32624 1.32623 1.32620 1.32616 1.32576
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3.3. The computing time and performance of the algorithm

The standard metric for evaluating the performance of an al-
gorithm can be expressed as:

P ¼ F
T
; (20)

where P means the performance which stands for the FLOPs per-
formed per second of the processor by an algorithm; F is the total
number of floating point operations; T is the total computing time.
The floating point operations can be determined by measurement
or using the methods introduced in the previous section, and the
total computing can be evaluated by considering both the memory
access time and the time to perform operations. An expression
accounting for both the operation time and the memory access
time can be written as:

T ¼ FtF þMtM;avg (21)

tM;avg ¼ ðthit þ rmisstmissÞ (22)

where F is the number of floating point operations;M is the number
of accesses to the memory; tF is the time to perform a FLOP; tM,avg is
the average time to perform amemory access; thit is the access time
to the high-level memory; rmiss is the ratio of missing to access the
data in the high level memory; tmiss is the penalty of missing to
access the data in the high level memory.

Substitute the time model into Eq. (20):

P ¼ 1
tF þ M

F ðthit þ rmisstmissÞ
;

The computational intensity can be defined as the ratio q ¼ F/M
which is the number of FLOPs per memory access. The performance
can then be written as:

P ¼ 1
tF þ 1

q ðthit þ rmisstmissÞ
(23)

Eq. (23) provides a simple expression to relate the performance
of an algorithm to its computational intensity and memory access
characteristics.
Fig. 10. Test problem configuration.
4. Numerical results

The accuracy and performance of the boundary-averaged CDP
method proposed here were evaluated using two test problems.
The first is a 5 � 5 e pin problem and the second is a standard
reactor benchmark published by Takeda and Ikeda (1991).
4.1. The 5 � 5-pin test problem

This test problem is a mult-pin case with 5 by 5 pins in the XeY
plane and 4 levels in the Z-axial direction as shown in Fig. 10. A
standard set of UO2/Water cross sections were used from the C5G7
benchmark. The analysis was performed based on the following
discretization: 40 flat source regions in the pin, 1 angle in one
octant and 0.03 cm ray spacing which introduces 31,960 rays and
176,832 segments in one pin for all angles. In order to the explicitly
show the performance of the boundary averaging, 4 different
average cases were performed:

1. Case 1: coarse ray spacing for TOP/BOTTOM face is 0.03 cm;
coarse ray spacing in radial direction is 0.03 cm and coarse ray
spacing in Z-axial direction is 1.0 cm for other faces.

2. Case 2: coarse ray spacing for TOP/BOTTOM face is 0.06 cm;
coarse ray spacing in radial direction is 0.06 cm and coarse ray
spacing in Z-axial direction is 1.0 cm for other faces.

3. Case 3: coarse ray spacing for TOP/BOTTOM face is 0.1 cm;
coarse ray spacing in radial direction is 0.1 cm and coarse ray
spacing in Z-axial direction is 1.0 cm for other faces.

4. Case 4: coarse ray spacing for TOP/BOTTOM face is 2.0 cm;
coarse ray spacing in radial direction is 0.1 cm and coarse ray
spacing in Z-axial direction is 1.0 cm for other faces.

The results for all cases are shown in Table 1 which also provides
theMOC result. As expected, if no averaging is used in CDP, then the
MOC and CDP results are identical. Also as expected, the results
change as the boundary averaging changes, but even in the most
aggressive averaging case the difference is only about 50 pcm. The
results suggest that the coarse ray spacing in case 3 with 40 sub-
boundaries on the TOP/BOTTOM face are sufficient to provide an
accurate result.

The performance of the algorithm was then evaluated and
Table 2 shows the number of non-zero elements for each case.
Several conclusions are apparent from this table. First, the
boundary averaging can significantly reduce the required storage.
As shown in the Table case 4 requires only 3.23% of the storage of
that without averaging. The second conclusion is that there is
Table 2
Non-zero elements of the probability matrix.

NBCs Nin-out Nreg-out Nin-reg Nreg-reg Nnz_1G

No_average 31,960 31,960 176,832 176,832 2400 388,024 100.00%
Case 1 3760 7040 21,240 21,240 2400 51,920 13.38%
Case 2 2016 3792 11,872 11,872 2400 29,936 7.71%
Case 3 1424 2688 8648 8648 2400 22,384 5.77%
Case 4 488 2672 3744 3704 2400 12,520 3.23%



Table 3
Floating point operations summary.

F_GP (estimated) F_GP (measured) Ratio/% F_Swp (estimated) F_Swp (measured) Ratio/% F_Swp (/Domisns/Nswp)

MOC e e 1.1140Eþ11 1.1140Eþ11 100.00 1.1140Eþ07
No_Avg 2.2983Eþ07 2.2983Eþ07 100.00 5.6605Eþ10 5.6610Eþ10 99.99 5.6605Eþ06
Case 1 1.9541Eþ07 1.9540Eþ07 100.01 7.5768Eþ09 7.5770Eþ09 100.00 7.5768Eþ05
Case 2 1.9323Eþ07 1.9320Eþ07 100.01 4.3770Eþ09 4.3770Eþ09 100.00 4.3770Eþ05
Case 3 1.9247Eþ07 1.9250Eþ07 99.99 3.2782Eþ09 3.2780Eþ09 100.01 3.2782Eþ05
Case 4 1.9143Eþ07 1.9140Eþ07 100.02 1.8318Eþ09 1.8320Eþ09 99.99 1.8318Eþ05

Table 4
The sweep performance of the MOC and CDP.

FLOPs t/s FLOPs speedup Time speedup No. of DCA q r/% P/MFLOPs

MOC 1.1140Eþ11 368.635 e e 5.1999Eþ11 0.214 1.21 302.21
No_average 5.6610Eþ10 78.032 2.0 4.7 1.1156Eþ11 0.507 1.91 725.41
Case 1 7.5770Eþ09 11.276 14.7 32.7 1.5054Eþ10 0.503 1.69 671.94
Case 2 4.3770Eþ09 6.861 25.5 53.7 8.8781Eþ09 0.493 1.56 637.95
Case 3 3.2780Eþ09 5.29 34.0 69.7 6.7116Eþ09 0.488 1.76 619.71
Case 4 1.8320Eþ09 2.914 60.8 126.5 3.6710Eþ09 0.499 2.18 628.61
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significant reduction in the incoming-outgoing and region-
eregion collision probabilities as the boundary averaging is
coarsened, however, the number of regioneregion probabilities is
the same.

The number of floating point operation is summarized in
Table 3, where F_GP is the FLOPs of the probability generation and
F_Swp is the FLOPs performed by the ray tracing process. The last
column is the FLOPs needed by one sub-domain per sweep. Both
the estimated and measured FLOPs are listed here where the esti-
mated FLOPs are calculated by the equations in the previous section
and the measured FLOPs are directly obtained by measurement
using the TAU (Tuning and Analysis Utilities) and PAPI (Perfor-
mance Application Programming Interface). The results in this
Table provide several insights about the performance of the
algorithm.

1) There is very good agreement in the measured and predicted
performance which provides confidence in the models intro-
duced in Section 3.2;

2) The FLOPs required by the CDP without averaging is less than 1/
2 of that of the MOC;

3) The coarsening of the averaging can significantly reduce the
FLOPs performed by the CDP, primarily because the number
Fig. 11. KUCA core benchm
of none-zeros and therefore the storage is significantly
reduced;

4) The FLOPs performed by the generation of the probabilities are
almost twice that of the MOC sweep and it does not change
much for different averaging cases, primarily because the FLOPs
is dominated by the number of segments which is the same for
different averaging cases.

The overall performance of the MOC and CDP algorithm is
summarized in Table 4, where DCA indicated the number of data
cache accesses; q is the computational intensity which is deter-
mined by dividing FLOPs with DCA; and r is the L1 cache miss rate.
As indicated in the Table, it is clear that the overall speedup is larger
than the FLOPs speedup, which is about 2 times for every case. This
is primarily because the performance of the processor for the CDP is
almost twice better than that for the MOC as shown in the last
column. As indicated in Eq. (23), the performance is dependent on
the computational intensity and the high-level cache miss ratio. In
this test problem, the high-level cachemiss ratio is almost the same
which is about 1%e2%, however the computational intensity of the
MOC is about half that of the CDP. Therefore we can conclude that
the CDP not only reduces the FLOPs performed but also improves
the overall performance of the processors.
ark core configuration.



Table 5
Comparison of k-eff for KUCA Benchmark.

Method UnRodded Rodded CR-worth

Ref Monte-Carlo 0.9780 0.9624 1.66E-02
±0.0006 ±0.0006 ±0.09E-2

MOC 0.9776 0.9627 1.59E-02
CDP_case1 0.9776 0.9627 1.59E-02
CDP_case2 0.9773 0.9624 1.59E-02
CDP_case3 0.9769 0.9619 1.59E-02
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4.2. KUCA Takeda core benchmark

The Kyoto University Critical Assembly (KUCA) benchmark was
published by (Takeda and Ikeda,1991). This problemmodels a small
Light Water reactor core of dimensions 50 cm � 50 cm � 50 cm,
with three material regions including fuel, control rod, and
reflector. Fig. 11 shows the core configuration and the 2 group cross
section are provided in Appendix A. The control rod worth was
evaluated for this problem by inserting and removing the control
rod.

The two cases were performed with identical discretizations in
which the sub-domain size was 1 cm � 1 cm � 1 cm with 32 fine-
regions in each sub-domain. The ray spacing was 0.03 cm with the
coarse ray spacing of 0.1 cm in the radial plane and 0.3 cm in the
axial direction. An S4 angular quadrature sets was used in both
cases.

Four calculating results are given including the MOC result and
CDP results with three different average cases:

1) CDP_Case1: CDP calculation without average,
2) CDP_Case2: CDP averagedwith the coarse ray spacing of 0.03 cm

in the radial plane and 0.15 cm in the axial direction,
3) CDP_Case3: CDP averaged with the coarse ray spacing of 0.1 cm

in the radial plane and 0.3 cm in the axial direction.

The reference results of Monte-Carlo method were provided in
(Takeda and Ikeda, 1991) and the k-eff and control rod worth
(k � k

0
)/(kk

0
) are compared to these results in Table 5. As expected,

the CDP without average is consistent to the MOC, and the average
introduces some discrepancy in k-eff. Because this problem has a
significant axial flux distribution compared to the previous test
problems, the use of a smaller number of flat source regions on the
TOP/BOTTOM interfaces introduces a larger discrepancy in k-eff.
The overall conclusion from these results is that CDPwith boundary
averaging can provide satisfactory results for this problemwith the
above discretization.

The computational performance of the MOC and CDP for the
KUCA problem is compared in Table 6. As indicated, CDP shows a
reduction in the execution time of from 3 to 30. The execution time
is reduced because of the smaller probability matrix and higher
Table 6
Computing time comparison.

Case Method Iterations Memory
per-processor

Total
time/s

Speedups

Void MOC 918 188.87 MB 3357.8
CDP_case1 918 210.48 MB 1041.04 3.2
CDP_case2 918 51.09 MB 273.69 12.3
CDP_case3 918 18.33 MB 119.28 28.2

Rodded MOC 927 188.87 MB 3494.5
CDP_case1 927 210.48 MB 916.01 3.8
CDP_case2 918 51.09 MB 272.08 12.8
CDP_case3 918 18.33 MB 116.7 29.9
processor performance. It also gives the averagememory allocation
of every processor when calculating this problem, in which 25
processors are used in special decomposition for every case.
Because the boundary angular fluxes needs to be stored for
communication, and the amount of boundary conditions domi-
nates the memory storage for there-dimensional MOC calculations,
it sometimes makes the calculation impossible because of the
insufficient memory for the boundary angular fluxes. The CDP
needs to store the probability matrix, so it increases the memory
allocationwhen the average is not performed. From the table, it can
be concluded that the average significantly speedups the
computing time and remarkably reduces the memory requirement
of the boundary angular fluxes as well.
5. Summary and conclusions

The previous research investigated the method of characteristic
direction probability (CDP), which combines the geometry flexi-
bility of the MOC and computing efficiency of the CPM, as a means
to reduce the computational efforts for 3D problems. In the CDP
method, the probabilities only couple the fine mesh regions tra-
versed by the characteristic lines in a particular direction within a
sub-domain. However the probability matrix can still be large in
CDP when the ray spacing is small, so the additional feature was
introduced of boundary averaging which considerably reduced the
number of outgoing/incoming angular fluxes transferred between
domains.

From the numerical results, it can be concluded that the CDP
without boundary averaging is exactly identical to the MOC and the
accuracy impact of the boundary averaging is depended on the
coarse ray spacing. The accuracy gets worse while the coarse ray
spacing increases. So there is a balance between the accuracy losing
and the computing time benefit.

A performance model was introduced in order to explicitly
analyze and compare the performance of MOC with the CDP on the
storage, floating point operations and computing time for various
boundary averaging cases. It shows the benefits from the CDP in
detail and the numerical results of two test problems indicate that
the boundary averaging method can significantly reduce the stor-
age and computing time, and yet maintain sufficient accuracy.
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Appendix A. Cross Sections

Table A.1

KUCA core benchmark two-group cross sections and energy group structure for
KUCA

Region Group Sabs/cm－1 nSf /cm－1 S1�1/cm－1 S1�2/cm－1 c

Core fuel 1
2

8.52709E-03
1.58196E-01

9.09319e-3
2.90183e-1

1.92423e-1
0.00000Eþ0

2.28253e-2
8.80439e-1

1.0

Control rod 1
2

1.74439E-02
1.82224E-01

0.00000Eþ0
0.00000Eþ0

6.77241e-2
0.00000Eþ0

6.45461e-5
3.52358e-2

e

Reflector 1
2

4.16392E-04
2.02999E-02

0.00000Eþ0
0.00000Eþ0

1.93446e-1
0.00000Eþ0

5.65042e-2
1.62452Eþ0

e

Empty (void) 1
2

4.65132E-05
1.32890E-03

0.00000Eþ0
0.00000Eþ0

1.27700e-2
0.00000Eþ0

2.40997e-5
1.07387e-2

e



Table A.2
Fuel-clad macroscopic cross-sections for C5G7 benchmark

Transport cross-section/cm�1 Absorption cross-section/cm�1 Capture cross-section/cm�1 Fission cross-section/cm�1 Nu Chi

Group 1 1.77949E-01 8.02480E-03 8.12740E-04 7.21206E-03 2.78145Eþ00 5.87910E-01
Group 2 3.29805E-01 3.71740E-03 2.89810E-03 8.19301E-04 2.47443Eþ00 4.11760E-01
Group 3 4.80388E-01 2.67690E-02 2.03158E-02 6.45320E-03 2.43383Eþ00 3.39060E-04
Group 4 5.54367E-01 9.62360E-02 7.76712E-02 1.85648E-02 2.43380Eþ00 1.17610E-07
Group 5 3.11801E-01 3.00200E-02 1.22116E-02 1.78084E-02 2.43380Eþ00 0.00000Eþ00
Group 6 3.95168E-01 1.11260E-01 2.82252E-02 8.30348E-02 2.43380Eþ00 0.00000Eþ00
Group 7 5.64406E-01 2.82780E-01 6.67760E-02 2.16004E-01 2.43380Eþ00 0.00000Eþ00

To group 1/cm�1 To group 2/cm�1 To group 3/cm�1 To group 4/cm�1 To group 5/cm�1 To group 6/cm�1 To group 7/cm�1

Group 1 1.27537E-01 4.23780E-02 9.43740E-06 5.51630E-09 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00
Group 2 0.00000Eþ00 3.24456E-01 1.63140E-03 3.14270E-09 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00
Group 3 0.00000Eþ00 0.00000Eþ00 4.50940E-01 2.67920E-03 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00
Group 4 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 4.52565E-01 5.56640E-03 0.00000Eþ00 0.00000Eþ00
Group 5 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 1.25250E-04 2.71401E-01 1.02550E-02 1.00210E-08
Group 6 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 1.29680E-03 2.65802E-01 1.68090E-02
Group 7 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 8.54580E-03 2.73080E-01

Table A.3
Moderator macroscopic cross-sections for C5G7 benchmark

Transport cross-section/cm�1 Absorption cross-section/cm�1 Capture cross-section/cm�1

Group 1 1.59206E-01 6.01050E-04 6.01050E-04
Group 2 4.12970E-01 1.57930E-05 1.57930E-05
Group 3 5.90310E-01 3.37160E-04 3.37160E-04
Group 4 5.84350E-01 1.94060E-03 1.94060E-03
Group 5 7.18000E-01 5.74160E-03 5.74160E-03
Group 6 1.25445Eþ00 1.50010E-02 1.50010E-02
Group 7 2.65038Eþ00 3.72390E-02 3.72390E-02

To group 1/cm�1 To group 2/cm�1 To group 3/cm�1 To group 4/cm�1 To group 5/cm�1 To group 6/cm�1 To group 7/cm�1

Group 1 4.44777E-02 1.13400E-01 7.23470E-04 3.74990E-06 5.31840E-08 0.00000Eþ00 0.00000Eþ00
Group 2 0.00000Eþ00 2.82334E-01 1.29940E-01 6.23400E-04 4.80020E-05 7.44860E-06 1.04550E-06
Group 3 0.00000Eþ00 0.00000Eþ00 3.45256E-01 2.24570E-01 1.69990E-02 2.64430E-03 5.03440E-04
Group 4 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 9.10284E-02 4.15510E-01 6.37320E-02 1.21390E-02
Group 5 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 7.14370E-05 1.39138E-01 5.11820E-01 6.12290E-02
Group 6 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 2.21570E-03 6.99913E-01 5.37320E-01
Group 7 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 0.00000Eþ00 1.32440E-01 2.48070Eþ00
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